跳到主要內容
 
:::

研究成果

點擊左方按鈕以暫停或開始輪撥研究成果,或使用快速鍵 S (暫停)、 R (開始)
  • 許良彥 博士
    J. Phys. Chem. Lett. 14, 25, 5924–5931 (2023).
    To explore non-adiabatic effects caused by electromagnetic (EM) vacuum fluctuations in molecules, we develop a general theory of internal conversion (IC) in the framework of quantum electrodynamics and propose a new mechanism, “quantum electrodynamic internal conversion” (QED-IC). The theory allows us to compute the rates of the conventional IC and QED-IC processes at the first-principles level. Our simulations manifest that, under experimentally feasible weak light–matter coupling conditions, EM vacuum fluctuations can significantly affect IC rates by an order of magnitude. Moreover, our theory elucidates three key factors in the QED-IC mechanism: the effective mode volume, coupling-weighted normal mode alignment, and molecular rigidity. The theory successfully captures the nucleus–photon interaction in the factor “co ...
  • 詹楊皓 博士
    Proceedings of National Academy of Sciences, 118 (25) e1906938118 (2021).
    Shift current is a direct current generated from nonlinear light–matter interaction in a noncentrosymmetric crystal and is considered a promising candidate for next-generation photovoltaic devices. The mechanism for shift currents in real materials is, however, still not well understood, especially if electron–hole interactions are included. Here, we employ a first-principles interacting Green’s-function approach on the Keldysh contour with real-time propagation to study photocurrents generated by nonlinear optical processes under continuous wave illumination in real materials. We demonstrate a strong direct current shift current at subbandgap excitation frequencies in monolayer GeS due to strongly bound excitons, as well as a giant excitonic enhancement in the shift current coefficients at above bandgap photon frequencies. Our re ...
  • 王偉華 博士
    Nano Lett., 22, 6, 2270–2276 (2022).
    Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm2 in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self ...
  • 許良彥 博士
    Journal of Physical Chemistry Letters, 13, 9695–9702 (2022).
    Richard Feynman stated that “The theory behind chemistry is quantum electrodynamics”. However, harnessing quantum-electrodynamic (QED) effects to modify chemical reactions is a grand challenge and currently has only been reported in experiments using cavities due to the limitation of strong light–matter coupling. In this article, we demonstrate that QED effects can significantly enhance the rate of electron transfer (ET) by several orders of magnitude in the absence of cavities, which is implicitly supported by experimental reports. To understand how cavity-free QED effects are involved in ET reactions, we incorporate the effect of infinite one-photon states into Marcus theory, derive an explicit expression for the rate of radiative ET, and develop the concept of “electron transfer overlap”. Moreover, QED effects may l ...
  • 任祥華 博士
    Nature Communications 13, 4598 (2022).
    Explorations of symmetry and topology have led to important breakthroughs in quantum optics, but much richer behaviors arise from the non-Hermitian nature of light-matter interactions. A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms near the cooperative resonance associated with the collective dipole modes. Here we show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice, and dispersive bulk Fermi arcs that originate from exceptional points are truncated by the light cone. From its nontrivial energy spectra topology, we demonstrate that the geometry-dependent non-Hermitian skin effect emerges in a ribbon geometry. Furthermore, skin modes localized at a boundary show a scale-free behavior that stems from  ...
  • 謝雅萍 博士
    Nano Lett., https://doi.org/10.1021/acs.nanolett.1c02331 (2021).
    We here demonstrate the multifunctional properties of atomically thin heterojunctions that are enabled by strong interfacial interactions and their integration into ultra-high performance, self-powered sensors. Epitaxial alignment between tin diselenide and graphene through direct growth produces thermoelectric and mechanoelectric properties beyond the ability of either component. An unprecedented ZT of 2.43 originated from the synergistic combination of graphene’s high carrier conductivity and SnSe2 mediated thermal conductivity lowering. Moreover, strong interaction at the SnSe2/graphene interface produces stress localization that results in a novel 2D-crack-assisted strain sensing mechanism whose sensitivity (GF=450) is superior to all other 2D materials. Finally, the graphene-assisted growth process, permits the formation of hi ...
  • 謝雅萍 博士
    Nature Communications, 12:6291 (2021).
    We here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history contro ...
  • 陳貴賢 博士
    Nano Energy, 93, 106809 (2022).
    Employing direct Z-scheme semiconductor heterostructures in photocatalysis offers efficient charge carrier separation and isolation of both redox reactions, thus beneficial to reduce CO2 into solar fuels. Here, a ZnS/ZnIn2S4 heterostructure, comprising cubic ZnS nanocrystals on hexagonal ZnIn2S4 (ZIS) nanosheets, is successfully fabricated in a single-pot hydrothermal approach. The composite ZnS/ZnIn2S4 exhibits microstrain at its interface with an electric field favorable for Z-scheme. At an optimum ratio of Zn:In (~ 1:0.5), an excellent photochemical quantum efficiency of around 0.8% is reached, nearly 200-fold boost compared with pristine ZnS. Electronic levels and band alignments are deduced from ultraviolet photoemission spectroscopy and UV-Vis. Evidence of the direct ...
  • 賴品光 博士
    Advanced Materials. https://doi.org/10.1002/adma.202208966 (2023).
    Our latest publication employed PalmGRET, a bioluminescence-resonance-energy-transfer (BRET)-based EV reporter, to discover an abundant release of big EVs (bEVs; >200 nm) by aggressive breast cancers when compared to epithelial and less malignant cells. bEVs have been largely overshadowed by small EVs (sEVs; <200 nm) in EV research in the past decades. This is the first study to accurately detect and systematically compare biophysical property and in vivo profiles of breast cancer bEVs and sEVs. This is followed by the identification of EV surface oncoproteins, and their role in modulating organotropism and tumorigenic potential of the bEVs and sEVs. Our landmark findings impart a broad and deep reference for upcoming EV studies, with an emphasis on EV engineering for diagnosis and therapeutic applications.
  • 賴品光 博士
    Nature Protocols. doi: 10.1038/s41596-021-00564-8 (2021).
    The dynamics of DNA double-strand break (DSB) repairs including homology-directed repair and nonhomologous end joining play an important role in diseases and therapies. However, investigating DSB repair is typically a low-throughput and cross-sectional process, requiring disruption of cells and organisms for subsequent nuclease-, sequencing- or reporter-based assays. In this protocol, we provide instructions for establishing a bioluminescent repair reporter system using engineered Gaussia and Vargula luciferases for noninvasive tracking of homology-directed repair and nonhomologous end joining, respectively, induced by SceI meganuclease, SpCas9 or SpCas9 D10A nickase-mediated editing. We also describe complementation with orthogonal DSB repair assays and omics analyses to validate the reporter readouts. The bioluminescent repair reporter system pro ...
  • 羅佩凌 博士
    J. Phys. Chem. Lett.,15, 3733–3739 (2024)
    The radical–radical reaction between OH and HO2 has been considered for a long time as an important reaction in tropospheric photochemistry and combustion chemistry. However, a significant discrepancy of an order of magnitude for rate coefficients of this reaction is found between two recent experiments. Herein, we investigate the reaction OH + HO2 via direct spectral quantification of both the precursor (H2O2) and free radicals (OH and HO2) upon the 248 nm photolysis of H2O2 using infrared two-color time-resolved dual-comb spectroscopy. With quantitative and kinetic analysis of concentration profiles of both OH and HO2 at varied conditions, the rate coefficient kOH+HO2 is determined to be (1.10 ± 0.12) &time ...
  • 余慈顏 博士
    Nature Communications, 13, 1513 (2022).
    Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic–inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and 13C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-si ...
  • 任祥華 博士
    Quantum Sci. Tech. 9, 025020 (2024).
    Scalable graph states are essential for measurement-based quantum computation and many entanglement-assisted applications in quantum technologies. Generation of these multipartite entangled states requires a controllable and efficient quantum device with delicate design of generation protocol. Here we propose to prepare high-fidelity and scalable graph states in one and two dimensions, which can be tailored in an atom-nanophotonic cavity via state carving technique. We propose a systematic protocol to carve out unwanted state components, which facilitates scalable graph states generations via adiabatic transport of a definite number of atoms in optical tweezers. An analysis of state fidelity is also presented, and the state preparation probability can be optimized via multiqubit state carvings and sequential single-photon probes. Our results showca ...
  • 羅佩凌 博士
    Communications Chemistry, 6, 130 (2023)
    Ozonolysis of isoprene is considered to be an important source of formic acid (HCOOH), but its underlying reaction mechanisms related to HCOOH formation are poorly understood. Here, we report the kinetic and product studies of the reaction between the simplest Criegee intermediate (CH2OO) and formaldehyde (HCHO), both of which are the primary products formed in ozonolysis of isoprene. By utilizing time-resolved infrared laser spectrometry with the multifunctional dual-comb spectrometers, the rate coefficient kCH2OO+HCHO is determined to be (4.11 ± 0.25) × 10−12 cm3 molecule−1 s−1 at 296 K and a negative temperature dependence of the rate coefficient is observed and described by an Arrheni ...
  • 謝佳龍 博士
    ACS Nano, 16(2): 2774-2788 (2022).
    Chromatin is a DNA–protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the ...
  • 張煥正 博士
    Nano Lett. 23, 9811–9816 (2023).
    Extreme ultraviolet (EUV) radiation with wavelengths of 10 – 121 nm has drawn considerable attention recently for its use in photolithography to fabricate nanoelectronic chips.  This study demonstrates, for the first time, fluorescent nanodiamonds (FNDs) with nitrogen-vacancy (NV) centers as scintillators to image and characterize EUV radiations.  The FNDs employed are ~100 nm in size; they form a uniform and stable thin film on an indium tin oxide-coated slide by electrospray deposition.  The film is non-hygroscopic, photostable, and can emit bright red fluorescence from NV0 centers when excited by EUV light.  An FND-based imaging device has been developed and applied for beam diagnostics of 50 nm and 13.5 nm synchrotron radiations, achieving a spatial resolution of 30 μm using a film of ~1 μm thickness.& ...

最新消息

演講資訊

Apr
18
2024
Microscopy for big and small
朱麗安助理教授, 國立清華大學生醫工程與環境科學系
2024-04-18 下午 03:30  浦大邦紀念講堂
Apr
25
2024
Direct Visualization of Electronic Liquid Crystal Phases in Correlated Dirac Nodal Line Semimetals
莊天明副研究員, 本院物理研究所
2024-04-25 下午 03:30  浦大邦紀念講堂
May
02
2024
Fe-S Janus complexes: biomimic catalysts and molecular agents toward energy conversion and biomedical applications
江明錫研究員, 本院化學研究所
2024-05-02 下午 03:30  浦大邦紀念講堂
May
09
2024
(To be announced)
陳則銘特聘教授, 國立成功大學物理學系
2024-05-09 下午 03:30  浦大邦紀念講堂

活動資訊

中研院原分所實驗室開放參觀活動
浦大邦紀念講堂
2024-04-20 下午 01:30 ~ 下午 04:00
本活動是專為大學院校同學所舉辦,希望能讓各位對中研院原分所「化學動態學與光譜組」、「尖端材料與表面科學組」、「生物物理與分析技術組」及「原子物理與光學組」等四個領域的研究方向有所認識。尤其,本所暑期研究實習計畫 (https://www.iams.sinica.edu.tw/ssr/) 將於四月一日開放申請,有興趣的同學,可藉此更加了解本所各實驗室的研究方向與環境,以便做出最適合自己的選擇。
國科會微電影「遊戲開始」特映會及量子物理座談會
浦大邦紀念講堂
2024-04-22 下午 12:00 ~ 下午 02:10
由國科會、中華民國數學會與台灣物理學會攜手金鐘獎提名團隊,打造之全新懸疑科普微電影:『遊戲開始』物理篇《The Quantum Quiz》特映會,歡迎大學部/研究所學生報名參加。播放結束後舉辦量子物理座談會,邀請從事量子物理的老師,讓學生了解在台灣可以從事的量子相關研究。
Taiwan-Japan Workshop on Atmospheric Physics and Chemistry
浦大邦紀念講堂
2024-05-15 下午 03:00 ~ 2024-05-18 上午 11:00

Science Themes for the 2024 workshop are:

  • General Atmospheric Physics and Chemistry (including laboratory, field, chamber and model work)
  • Multiphase Processes (including chemical interactions in SOA and aerosol formations, and particulate matter (PM) evolution)
  • Gas Phase Chemical Physics (including exploring chemical reactivity, kinetics, and reaction mechanisms in the gas phase)

The workshop series provides an informal opportunity for presentation of recent results and ongoing projects from both Taiwan and Japan’s sides.

The meeting format is a combination of more than 15 invited talks and a poster session, alongside the international communication and lab visiting opportunity.

2024瑪麗居禮科學營
國立臺灣師範大學林口校區
2024-07-05 上午 08:30 ~ 2024-07-08 下午 09:00
為紀念瑪麗居禮 (Maria Skłodowska-Curie)榮獲諾貝爾化學獎100週年,在李遠哲院士的倡議以及國內學術界精英及產業界傑出企業家們的協力奔走之下,「居禮夫人高中化學營」首度於2011年7月隆重舉行。迄2023年,這個由財團法人張昭鼎紀念基金會所承辦的暑期營隊活動已持續辦理了十三屆。2023年營隊名稱正式更改為「瑪麗居禮科學營」,為表達對這位有卓越成就之女性科學家的尊重。辦理「瑪麗居禮科學營」的主要目的,是期盼學員們能實際體會科學與我們日常生活息息相關,譬如在電子、能源、尖端材料與生技產業中均扮演不可或缺的角色。
 
目前位置:首頁
回到最上層