跳到主要內容
 
:::

重要研究成果

任祥華 博士
(2022)
Yi-Cheng Wang, Jhih-Shih You & H. H. Jen
Nature Communications 13, 4598 (2022).
本研究題目A non-Hermitian optical atomic mirror的代表性圖片
Explorations of symmetry and topology have led to important breakthroughs in quantum optics, but much richer behaviors arise from the non-Hermitian nature of light-matter interactions. A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms near the cooperative resonance associated with the collective dipole modes. Here we show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice, and dispersive bulk Fermi arcs that originate from exceptional points are truncated by the light cone. From its nontrivial energy spectra topology, we demonstrate that the geometry-dependent non-Hermitian skin effect emerges in a ribbon geometry. Furthermore, skin modes localized at a boundary show a scale-free behavior that stems from the long-range interaction and whose mechanism goes beyond the framework of non-Bloch band theory. Our work opens the door to the study of the interplay among non-Hermiticity, topology, and long-range interaction.
楊大衍 博士
(2022)
Sheh-Yi Sheu,* Hua-Yi Hsu, and Dah-Yen Yang*
Advanced Intelligent Systems, 3(7):2000273 (2021).
本研究題目Quantum logic gates based on DNAtronics, RNAtronics and Proteintronics的代表性圖片
Quantum computers adopt an n-state quantum mechanical system to manipulate the superposition state. However, molecular transistors have not been used to build up the quantum logic gate. Here, we demonstrate that DNA, RNA and protein are promising media for quantum computers, and one could employ residue pairs, including nucleotide base pairs and amino acid pairs, via proton-coupled electron transfer to fabricate a quantum logic gate. In the residue pair, the proton transfer between donor and acceptor states fulfill a qubit. Both the DNA-CG (3-qubit) nucleobase pair and nucleotide base pair obey the Toffoli gate. AT (2-qubit) nucleotide base pair behaves as a SWAP gate and a CNOT gate. Furthermore, the AU and RNA-CG nucleotide base pairs follow the CNOT gate and Toffoli gate, respectively. In addition, a pair of amino acids achieves 1-qubit and satisfies the Pauli-X, -Y and -Z gates. The generators of universal quantum logic gates are obtained. We demonstrate that quantum computers are constructed by molecular transistors in the size of one nanometer, and DNA, RNA and protein residue pairs are used to make universal quantum logic gates. The double helix of the nucleic acid is a quantum computer. These results provide a new perspective in topological quantum computers.
羅佩凌 博士
(2022)
Pei-Ling Luo* and I-Yun Chen
Analytical Chemistry, 94, 5752 (2022)
本研究題目Synchronized two-color time-resolved dual-comb spectroscopy for quantitative detection of HOx radicals formed from Criegee intermediates的代表性圖片
A novel spectrometer has been developed based on synchronized two-color time-resolved dual-comb spectroscopy (TRDCS), enabling high-resolution hyperspectral measurements. The proposed approach with TRDCS exhibits great potential in quantitative diagnostics of multispecies and opens opportunities to decipher key reaction mechanisms in atmospheric chemistry. In this work, we perform simultaneous measurements in two distinct molecular fingerprint regions near 2.9 and 7.8 μm by employing the new approach with synchronized two-color TRDCS. Upon flash photolysis of CH2I2/O2/N2 gas mixtures, multiple reaction species, involving the simplest Criegee intermediates (CH2OO), formaldehyde (CH2O), hydroxyl (OH) and hydroperoxy (HO2) radicals are simultaneously detected with microsecond time resolution. The concentration of each molecule can be determined based on high-resolution rovibrational absorption spectroscopy. With quantitative detection and simulation of temporal concentration profiles of the targeted molecules at various conditions, the underlying reaction mechanisms and pathways related to the formation of the HOx radicals, which can be generated from decomposition of initially energized and vibrationally excited Criegee intermediates, are explored.
余慈顏 博士
(2022)
Cheng-Chieh Lin, Shing-Jong Huang, Pei-Hao Wu, Tzu-Pei Chen, Chih-Ying Huang, Ying-Chiao Wang, Po-Tuan Chen, Denitsa Radeva, Ognyan Petrov, Vladimir Gelev, Raman Sankar, Chia-Chun Chen,
Chun-Wei Chen*, Tsyr-Yan Yu*
Nature Communications, 13, 1513 (2022).
本研究題目Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR的代表性圖片
Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic–inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and 13C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-site cation dynamics and the structural rigidity of the organic spacers, so providing a molecular-level insight into the design of 2D OIHPs.
謝佳龍 博士
(2022)
Yi-Teng Hsiao, Chia-Ni Tsai, Te-Hsin Chen, Chia-Lung Hsieh*
ACS Nano, 16(2): 2774-2788 (2022)
本研究題目Label-Free Dynamic Imaging of Chromatin in Live Cell Nuclei by High-Speed Scattering-Based Interference Microscopy的代表性圖片
Chromatin is a DNA–protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.Link to the paper: https://pubs.acs.org/doi/10.1021/acsnano.1c09748Recommended in Faculty Opinion: https://facultyopinions.com/prime/741388510Reported by Science Promotion & Engagement Center: https://spec.ntu.edu.tw/20220322-research-chem/ 
 
目前位置:關於本所 / 重要研究成果 / 第 1 頁
回到最上層