重要研究成果
許良彥 博士
(2023)
Journal of Physical Chemistry Letters, 14, 9, 2395–2401 (2023).

The Huang–Rhys (HR) factor, a dimensionless factor that characterizes electron–phonon (vibronic) coupling, has been extensively employed to investigate a variety of material properties. In the same spirit, we propose a quantity called the polaritonic HR factor to quantitatively describe the effects of (i) light–matter coupling induced by permanent dipoles and (ii) dipole self-energy. The former leads to polaritonic displacements, while the latter is associated with the electronic coupling shift named reorganization dipole self-coupling. In the framework of macroscopic quantum electrodynamics, our theory can evaluate the polaritonic HR factor, reorganization dipole self-coupling, and modified light–matter coupling strength in an arbitrary dielectric environment without free parameters, whose magnitudes are in good agreement with the previous experimental results. We believe that this study provides a useful perspective on understanding and quantifying light–matter interactions in media.
賴品光 博士
(2023)
Advanced Materials. https://doi.org/10.1002/adma.202208966 (2023).

Our latest publication employed PalmGRET, a bioluminescence-resonance-energy-transfer (BRET)-based EV reporter, to discover an abundant release of big EVs (bEVs; >200 nm) by aggressive breast cancers when compared to epithelial and less malignant cells. bEVs have been largely overshadowed by small EVs (sEVs; <200 nm) in EV research in the past decades. This is the first study to accurately detect and systematically compare biophysical property and in vivo profiles of breast cancer bEVs and sEVs. This is followed by the identification of EV surface oncoproteins, and their role in modulating organotropism and tumorigenic potential of the bEVs and sEVs. Our landmark findings impart a broad and deep reference for upcoming EV studies, with an emphasis on EV engineering for diagnosis and therapeutic applications.
王偉華 博士
(2022)
Nano Lett., 22, 6, 2270–2276 (2022).

Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm2 in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self-gating in the rubber phase is attributed to the correlation between the intra- and intersystem Coulomb interactions, further confirmed by Raman spectroscopy. This study provides insights into the capacitive coupling at the InSe/IL interface, paving the way to developing liquid/2D material hybrid devices.
陳貴賢 博士
(2022)
Nano Energy, 93, 106809 (2022).

Employing direct Z-scheme semiconductor heterostructures in photocatalysis offers efficient charge carrier separation and isolation of both redox reactions, thus beneficial to reduce CO2 into solar fuels. Here, a ZnS/ZnIn2S4 heterostructure, comprising cubic ZnS nanocrystals on hexagonal ZnIn2S4 (ZIS) nanosheets, is successfully fabricated in a single-pot hydrothermal approach. The composite ZnS/ZnIn2S4 exhibits microstrain at its interface with an electric field favorable for Z-scheme. At an optimum ratio of Zn:In (~ 1:0.5), an excellent photochemical quantum efficiency of around 0.8% is reached, nearly 200-fold boost compared with pristine ZnS. Electronic levels and band alignments are deduced from ultraviolet photoemission spectroscopy and UV-Vis. Evidence of the direct Z-scheme and carrier dynamics is verified by photo-reduction experiment, along with photoluminescence (PL) and time-resolved PL. Finally, diffuse-reflectance infrared Fourier transformed spectroscopy explores the CO2 and related intermediate species adsorbed on the catalyst during the photocatalytic reaction. This microstrain-induced direct Z-scheme approach opens a new pathway for developing next-generation photocatalysts for CO2 reduction.
許良彥 博士
(2022)
Journal of Physical Chemistry Letters, 13, 9695–9702 (2022).

Richard Feynman stated that “The theory behind chemistry is quantum electrodynamics”. However, harnessing quantum-electrodynamic (QED) effects to modify chemical reactions is a grand challenge and currently has only been reported in experiments using cavities due to the limitation of strong light–matter coupling. In this article, we demonstrate that QED effects can significantly enhance the rate of electron transfer (ET) by several orders of magnitude in the absence of cavities, which is implicitly supported by experimental reports. To understand how cavity-free QED effects are involved in ET reactions, we incorporate the effect of infinite one-photon states into Marcus theory, derive an explicit expression for the rate of radiative ET, and develop the concept of “electron transfer overlap”. Moreover, QED effects may lead to a barrier-free ET reaction whose rate is dependent on the energy-gap power law. This study thus provides new insights into fundamental chemical principles, with promising prospects for QED-based chemical reactions.
目前位置:關於本所 / 重要研究成果 / 第 1 頁
中央研究院 原子與分子科學研究所版權所有 |
個人隱私權聲明 |
保有個資檔案公開項目彙整表 |
行動版
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:office@po.iams.sinica.edu.tw
最後更新於 2023-05-26 11:10:53
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:office@po.iams.sinica.edu.tw
最後更新於 2023-05-26 11:10:53