跳到主要內容
 
:::

研究成果 - 陳貴賢 博士

尖端材料與表面科學組
陳貴賢 博士
尖端材料實驗室 (AML)
主持人:陳貴賢 博士
電子郵件:點此顯示(開新頁)
辦公室:228
辦公室電話:+886-2-2366-8232
實驗室:NB03, 台大凝態中心-1002,1014,1016
實驗室電話:+886-2-3366-5231
Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon
Amr Sabbah, Indrajit Shown*, Mohammad Qorbani, Fang-Yu Fu, Tsai-Yu Lin, Heng-Liang Wu, Po-Wen Chung, Chih-I. Wu, Svette Reina Merden Santiago, Ji-Lin Shen, Kuei-Hsien Chen*, Li-Chyong Chen*
Nano Energy, 93, 106809 (2022).
Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon
Employing direct Z-scheme semiconductor heterostructures in photocatalysis offers efficient charge carrier separation and isolation of both redox reactions, thus beneficial to reduce CO2 into solar fuels. Here, a ZnS/ZnIn2S4 heterostructure, comprising cubic ZnS nanocrystals on hexagonal ZnIn2S4 (ZIS) nanosheets, is successfully fabricated in a single-pot hydrothermal approach. The composite ZnS/ZnIn2S4 exhibits microstrain at its interface with an electric field favorable for Z-scheme. At an optimum ratio of Zn:In (~ 1:0.5), an excellent photochemical quantum efficiency of around 0.8% is reached, nearly 200-fold boost compared with pristine ZnS. Electronic levels and band alignments are deduced from ultraviolet photoemission spectroscopy and UV-Vis. Evidence of the direct Z-scheme and carrier dynamics is verified by photo-reduction experiment, along with photoluminescence (PL) and time-resolved PL. Finally, diffuse-reflectance infrared Fourier transformed spectroscopy explores the CO2 and related intermediate species adsorbed on the catalyst during the photocatalytic reaction. This microstrain-induced direct Z-scheme approach opens a new pathway for developing next-generation photocatalysts for CO2 reduction.
link: 相關連結
 
目前位置:本所人員 / 研究人員 / 陳貴賢 / 研究成果
回到最上層