跳到主要內容
 
:::

研究成果

點擊左方按鈕以暫停或開始輪撥研究成果,或使用快速鍵 S (暫停)、 R (開始)
  • 余慈顏 博士
    Nature Communications, 13, 1513 (2022).
    Limited methods are available for investigating the reorientational dynamics of A-site cations in two-dimensional organic–inorganic hybrid perovskites (2D OIHPs), which play a pivotal role in determining their physical properties. Here, we describe an approach to study the dynamics of A-site cations using solid-state NMR and stable isotope labelling. 2H NMR of 2D OIHPs incorporating methyl-d3-ammonium cations (d3-MA) reveals the existence of multiple modes of reorientational motions of MA. Rotational-echo double resonance (REDOR) NMR of 2D OIHPs incorporating 15N- and 13C-labeled methylammonium cations (13C,15N-MA) reflects the averaged dipolar coupling between the C and N nuclei undergoing different modes of motions. Our study reveals the interplay between the A-si ...
  • 張煥正 博士
    ACS Appl. Mater. Interfaces 12, 3847−3853 (2020).
    Fluorescent nanodiamond (FND) containing nitrogen-vacancy (NV) centers as built-in fluorophores exhibits a nearly constant emission profile over 550 – 750 nm upon excitation by vacuum-ultraviolet (VUV), extreme ultraviolet (EUV), and X- radiations from a synchrotron source over the energy (wavelength) range of 6.2 – 1450 eV (0.86 – 200 nm).  The photoluminescence (PL) quantum yield of FND increases steadily with the increasing excitation energy, attaining a value as great as 1700% at 700 eV (1.77 nm).  Notably, the yield curve is continuous, having no gap in the VUV to X-ray region.  In addition, no significant PL intensity decreases were observed for hours.  Applying the FND sensor to measure the absorption cross sections of gaseous O2 over 110 – 200 nm and comparing the measurements with ...
  • 廖仲麒 博士
    eLife 9, e53580 (2020).
    Subdistal appendages (sDAPs) are centriolar elements observed proximal to the distal appendages (DAPs) in vertebrates. Despite their obvious presence, structural and functional understanding of sDAPs remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that, although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal ...
  • 賴品光 博士
    Advanced Science, doi:/10.1002/advs.202001467 (2020).
    Extracellular particles (EPs) including extracellular vesicles (EVs) and exomeres play significant roles in diseases and therapeutic applications. However, their spatiotemporal dynamics in vivo have remained largely unresolved in detail due to the lack of a suitable method. Therefore, a bioluminescence resonance energy transfer (BRET)‐based reporter, PalmGRET, is created to enable pan‐EP labeling ranging from exomeres (<50 nm) to small (<200 nm) and medium and large (>200 nm) EVs. PalmGRET emits robust, sustained signals and allows the visualization, tracking, and quantification of the EPs from whole animal to nanoscopic resolutions under different imaging modalities, including bioluminescence, BRET, and fluorescence. Using PalmGRET, it is shown that EPs released by lung metastatic hepatocellular carcinoma (HCC) exhibit lung tropism wi ...
  • 郭哲來 博士
    Angewandte Chemie International Edition, https://doi.org/10.1002/anie.202012665 (2020).
    Experimental infrared spectra between 2600 to 3800 cm-1 for a series of asymmetric proton bound dimers with protonated trimethylamine (TMA–H+) as the proton donor were recorded and analyzed. Based on conventional wisdom, the frequency of the N-H+ stretching mode is expected to red shift as the proton affinity of proton acceptors (Ar, N2, CO, C2H2, H2O, CH3OH, and C2H5OH) increases. The observed band, however, shows a peculiar splitting of ≈300 cm-1 with the intensity shifting pattern resembling a two-level system. Theoretical investigation based on ab initio anharmonic algorithms reveals that the observed band splitting and its extraordinarily large gap of ≈300 cm-1 is a result of strong coupling betw ...
  • 陳貴賢 博士
    Nature Commmunictions 11, 4233 (2020).
    Nonnoble metal catalysts are low-cost alternatives to Pt for the oxygen reduction reactions (ORRs), which have been studied for various applications in electrocatalytic systems. Among them, transition metal complexes, characterized by a redox-active single-metal-atom with biomimetic ligands, such as pyrolyzed cobalt–nitrogen–carbon (Co–N x /C), have attracted considerable attention. Therefore, we reported the ORR mechanism of pyrolyzed Vitamin B12 using operando X-ray absorption spectroscopy coupled with electrochemical impedance spectroscopy, which enables operando monitoring of the oxygen binding site on the metal center. material design strategies for high-performance electrocatalysts for fuel cell applications. Furthermore, the charge transfer mechanism between the catalyst and reactant enables further Co–O species  ...
  • 楊大衍 博士
    Advanced Intelligent Systems, 3(7):2000273 (2021).
    Quantum computers adopt an n-state quantum mechanical system to manipulate the superposition state. However, molecular transistors have not been used to build up the quantum logic gate. Here, we demonstrate that DNA, RNA and protein are promising media for quantum computers, and one could employ residue pairs, including nucleotide base pairs and amino acid pairs, via proton-coupled electron transfer to fabricate a quantum logic gate. In the residue pair, the proton transfer between donor and acceptor states fulfill a qubit. Both the DNA-CG (3-qubit) nucleobase pair and nucleotide base pair obey the Toffoli gate. AT (2-qubit) nucleotide base pair behaves as a SWAP gate and a CNOT gate. Furthermore, the AU and RNA-CG nucleotide base pairs follow the CNOT gate and Toffoli gate, respectively. In addition, a pair of amino acids achieves 1-qubit and sati ...
  • 賴品光 博士
    Nucleic Acids Research, doi: 10.1093/nar/gkaa669 (2020).
    Tracking DNA double strand break (DSB) repair is paramount for the understanding and therapeutic development of various diseases including cancers. Herein, we describe a multiplexed bioluminescent repair reporter (BLRR) for non-invasive monitoring of DSB repair pathways in living cells and animals. The BLRR approach employs secreted Gaussia and Vargula luciferases to simultaneously detect homology-directed repair (HDR) and non-homologous end joining (NHEJ), respectively. BLRR data are consistent with next-generation sequencing results for reporting HDR (R2 = 0.9722) and NHEJ (R2 = 0.919) events. Moreover, BLRR analysis allows longitudinal tracking of HDR and NHEJ activities in cells, and enables detection of DSB repairs in xenografted tumours in vivo. Using the BLRR system, we observed a significant difference in the efficienc ...
  • 汪治平 博士
    Nature Communication 11, 2787 (2020)
    Availability of relativistically intense, single-cycle, tunable infrared sources will open up newareas of relativistic nonlinear optics of plasmas, impulse IR spectroscopy and pump-probeexperiments in the molecular fingerprint region. However, generation of such pulses is still achallenge by current methods. Recently, it has been proposed that time dependent refractiveindex associated with laser-produced nonlinear wakes in a suitably designed plasma densitystructure rapidly frequency down-converts photons. The longest wavelength photons slipbackwards relative to the evolving laser pulse to form a single-cycle pulse within the nearlyevacuated wake cavity. This process is called photon deceleration. Here, we demonstrate thisscheme for generating high-power (~100 GW), near single-cycle, wavelength tunable(3–20 μm), infrared pulses using an 81 ...
  • 羅佩凌 博士
    Analytical Chemistry, 94, 5752 (2022)
    A novel spectrometer has been developed based on synchronized two-color time-resolved dual-comb spectroscopy (TRDCS), enabling high-resolution hyperspectral measurements. The proposed approach with TRDCS exhibits great potential in quantitative diagnostics of multispecies and opens opportunities to decipher key reaction mechanisms in atmospheric chemistry. In this work, we perform simultaneous measurements in two distinct molecular fingerprint regions near 2.9 and 7.8 μm by employing the new approach with synchronized two-color TRDCS. Upon flash photolysis of CH2I2/O2/N2 gas mixtures, multiple reaction species, involving the simplest Criegee intermediates (CH2OO), formaldehyde (CH2O), hydroxyl (OH) and hydroperoxy (HO2) radicals are simultaneously detected with mic ...
  • 郭哲來 博士
    The Journal of Physical Chemistry Letters 11, 10067 (2020); https://doi.org/10.1021/acs.jpclett.0c03059.
    Complex vibrational features of solvated hydronium ion, H3O+, in 3 μm enable us to look into the vibrational coupling among O-H stretching modes and other degrees of freedom. Two anharmonic coupling schemes have often been engaged to explain observed spectra: coupling with OH bending overtone, known as Fermi resonance (FR), has been proposed to account for the splitting of the OH stretch band at ~3300 cm-1 in H3O+…Ar3, but an additional peak in H3O+…(N2)3 at the similar frequency region has been assigned to a combination band (CB) with the low-frequency intermolecular stretches. While even stronger vibrational coupling is expected in H3O+…(H2O)3, such pronounced peaks are a ...
  • 謝雅萍 博士
    Nature Communications, 12:6291 (2021).
    We here report on the direct observation of ferroelectric properties of water ice in its 2D phase. Upon nanoelectromechanical confinement between two graphene layers, water forms a 2D ice phase at room temperature that exhibits a strong and permanent dipole which depends on the previously applied field, representing clear evidence for ferroelectric ordering. Characterization of this permanent polarization with respect to varying water partial pressure and temperature reveals the importance of forming a monolayer of 2D ice for ferroelectric ordering which agrees with ab-initio and molecular dynamics simulations conducted. The observed robust ferroelectric properties of 2D ice enable novel nanoelectromechanical devices that exhibit memristive properties. A unique bipolar mechanical switching behavior is observed where previous charging history contro ...
  • 許良彥 博士
    Journal of Chemical Physics 155, 074101 (2021); https://doi.org/10.1063/5.0057018
    Our previous study [S. Wang et al., J. Chem. Phys. 153, 184102 (2020)] has shown that in a complex dielectric environment, molecular emission power spectra can be expressed as the product of the lineshape function and the electromagnetic environment factor (EEF). In this work, we focus on EEFs in a vacuum–NaCl–silver system and investigate molecular emission power spectra in the strong exciton–polariton coupling regime. A numerical method based on computational electrodynamics is presented to calculate the EEFs of single-molecule emitters in a dispersive and lossy dielectric environment with arbitrary shapes. The EEFs in the far-field region depend on the detector position, emission frequency, and molecular orientation. We quantitatively analyze the asymptotic behavior of the EFFs in the far-field region and qualitatively provide  ...
  • 許良彥 博士
    Chem, 2020, 6, 3396-3408.
    Large-scale inhomogeneous plasmonic metal chips have been demonstrated as a promisingplatform for biochemical sensing, but the origin of their strong fluorescence enhancementsand average gap dependence is a challenging issue due to the complexity of modelingtremendous molecules within inhomogeneous gaps. To address this issue, we bridgedmicroscopic mechanisms and macroscopic observations, developed a kinetic model, andexperimentally investigated the fluorescence enhancement factors of IR800-streptavidinimmobilized on metal nanoisland films (NIFs). Inspired by the kinetic model, we controlledthe distribution of IR800-streptavidin within the valleys of NIFs by regioselectivemodification and achieved the fluorescence intensity enhancement up to 488-fold. Thekinetic model allows us to qualitatively explain the mechanism of fluorescence intensityenhance ...
  • 陳貴賢 博士
    Nature Commmunictions 11, 3682 (2020).
    In this study, a self-capping vaporliquid-solid reaction is proposed to fabricate large-grain, continuous MoS2 films. An intermediate liquid phase-Na2Mo2O7 is formed through a eutectic reaction of MoO3 and NaF,followed by being sulfurized into MoS2. The as-formed MoS2 seeds function as a capping layer that reduces the nucleation density and promotes lateral growth. By tuning the driving force of the reaction, large mono/bilayer (1.1 mm/200 μm) flakes or full-coverage films (with a record-high average grain size of 450 μm) can be grown on centimeter-scale substrates. The field-effect transistors fabricated from the full-coverage films show high mobility (33 and 49 cm2V-1s-1 for the mono and bilayer regions) and on/off ratio (1 ~ 5 × 108) across a 1.5 cm × 1.5 cm region.
  • 任祥華 博士
    Nature Communications 13, 4598 (2022).
    Explorations of symmetry and topology have led to important breakthroughs in quantum optics, but much richer behaviors arise from the non-Hermitian nature of light-matter interactions. A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms near the cooperative resonance associated with the collective dipole modes. Here we show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice, and dispersive bulk Fermi arcs that originate from exceptional points are truncated by the light cone. From its nontrivial energy spectra topology, we demonstrate that the geometry-dependent non-Hermitian skin effect emerges in a ribbon geometry. Furthermore, skin modes localized at a boundary show a scale-free behavior that stems from  ...
  • 謝雅萍 博士
    Nano Lett., https://doi.org/10.1021/acs.nanolett.1c02331 (2021).
    We here demonstrate the multifunctional properties of atomically thin heterojunctions that are enabled by strong interfacial interactions and their integration into ultra-high performance, self-powered sensors. Epitaxial alignment between tin diselenide and graphene through direct growth produces thermoelectric and mechanoelectric properties beyond the ability of either component. An unprecedented ZT of 2.43 originated from the synergistic combination of graphene’s high carrier conductivity and SnSe2 mediated thermal conductivity lowering. Moreover, strong interaction at the SnSe2/graphene interface produces stress localization that results in a novel 2D-crack-assisted strain sensing mechanism whose sensitivity (GF=450) is superior to all other 2D materials. Finally, the graphene-assisted growth process, permits the formation of hi ...
  • 詹楊皓 博士
    Proceedings of National Academy of Sciences
    Shift current is a direct current generated from nonlinear light–matter interaction in a noncentrosymmetric crystal and is considered a promising candidate for next-generation photovoltaic devices. The mechanism for shift currents in real materials is, however, still not well understood, especially if electron–hole interactions are included. Here, we employ a first-principles interacting Green’s-function approach on the Keldysh contour with real-time propagation to study photocurrents generated by nonlinear optical processes under continuous wave illumination in real materials. We demonstrate a strong direct current shift current at subbandgap excitation frequencies in monolayer GeS due to strongly bound excitons, as well as a giant excitonic enhancement in the shift current coefficients at above bandgap photon frequencies. Our re ...
  • 謝佳龍 博士
    ACS Nano, 16(2): 2774-2788 (2022)
    Chromatin is a DNA–protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the ...

最新消息

演講資訊

Aug
31
2022
Making Schrödinger cat states for any particle in a harmonic trap
Dr. Wayne Cheng-Wei Huang, Max Planck Institute for Multidisciplinary Sciences, Germany
2022-08-31 下午 02:30  張昭鼎紀念講堂

活動資訊

 
目前位置:首頁
回到最上層