跳到主要內容
 
:::

重要研究成果

廖仲麒 博士
(2020)
eLife 9, e53580 (2020).
本研究題目Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages的代表性圖片
Subdistal appendages (sDAPs) are centriolar elements observed proximal to the distal appendages (DAPs) in vertebrates. Despite their obvious presence, structural and functional understanding of sDAPs remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that, although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework of sDAPs to shed light on functional understanding, surprisingly revealing the coupling between DAPs and sDAPs.
張煥正 博士
(2020)

Hsiao-Chi Lu,1,* Jen-Iu Lo,1 Yu-Chain Peng,1 Sheng-Lung Chou,1 Bing-Ming Cheng,1,* and Huan-Cheng Chang2,*

1National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 300, Taiwan
2Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei 106, Taiwan

ACS Appl. Mater. Interfaces 12, 3847−3853 (2020).
本研究題目Nitrogen-Vacancy Centers in Diamond for High-Performance Detection of Vacuum Ultraviolet, Extreme Ultraviolet, and X‑rays的代表性圖片
Fluorescent nanodiamond (FND) containing nitrogen-vacancy (NV) centers as built-in fluorophores exhibits a nearly constant emission profile over 550 – 750 nm upon excitation by vacuum-ultraviolet (VUV), extreme ultraviolet (EUV), and X- radiations from a synchrotron source over the energy (wavelength) range of 6.2 – 1450 eV (0.86 – 200 nm).  The photoluminescence (PL) quantum yield of FND increases steadily with the increasing excitation energy, attaining a value as great as 1700% at 700 eV (1.77 nm).  Notably, the yield curve is continuous, having no gap in the VUV to X-ray region.  In addition, no significant PL intensity decreases were observed for hours.  Applying the FND sensor to measure the absorption cross sections of gaseous O2 over 110 – 200 nm and comparing the measurements with the sodium-salicylate scintillator, we obtained results in agreement with each other within 5%.  The superb photostability and broad applicability of FND offer a promising solution for the long-standing problem of lacking a robust and reliable detector for VUV, EUV, and X- radiations.
 
目前位置:關於本所 / 重要研究成果 / 第 4 頁
回到最上層