謝佳龍 博士 研究成果
ACS Photonics 11(12), 5239–5250 (2024)
Interferometric scattering (iSCAT) microscopy is currently among the most powerful techniques available for achieving high-sensitivity single-particle localization. This capability is realized through homodyne detection, where interference with a reference wave offers the promise of exceptionally precise three-dimensional (3D) localization. However, the practical application of iSCAT to 3D tracking has been hampered by rapid oscillations in the signal-to-noise ratio (SNR) as particles move along the axial direction. In this study, we introduce a novel strategy based on back pupil plane engineering, wherein a spiral phase mask is used to redistribute the phase of the scattered field of the particle uniformly across phase space, thus ensuring consistent SNR as the particle moves throughout the focal volume. Our findings demonstrate that this modified spiral phase iSCAT exhibits greatly enhanced localizability characteristics. Additionally, the uniform phase distribution enables reliable characterization of the particle’s optical properties regardless of its position. We substantiate our theoretical results with numerical and experimental demonstrations, showcasing the practical application of this approach for high-precision, ultrahigh-speed (20,000 frames per second) 3D tracking and polarizability measurement of freely diffusing nanoparticles as small as 20 nm.
ACS Nano, 16(2): 2774-2788 (2022).
Chromatin is a DNA–protein complex that is densely packed in the cell nucleus. The nanoscale chromatin compaction plays critical roles in the modulation of cell nuclear processes. However, little is known about the spatiotemporal dynamics of chromatin compaction states because it remains difficult to quantitatively measure the chromatin compaction level in live cells. Here, we demonstrate a strategy, referenced as DYNAMICS imaging, for mapping chromatin organization in live cell nuclei by analyzing the dynamic scattering signal of molecular fluctuations. Highly sensitive optical interference microscopy, coherent brightfield (COBRI) microscopy, is implemented to detect the linear scattering of unlabeled chromatin at a high speed. A theoretical model is established to determine the local chromatin density from the statistical fluctuation of the measured scattering signal. DYNAMICS imaging allows us to reconstruct a speckle-free nucleus map that is highly correlated to the fluorescence chromatin image. Moreover, together with calibration based on nanoparticle colloids, we show that the DYNAMICS signal is sensitive to the chromatin compaction level at the nanoscale. We confirm the effectiveness of DYNAMICS imaging in detecting the condensation and decondensation of chromatin induced by chemical drug treatments. Importantly, the stable scattering signal supports a continuous observation of the chromatin condensation and decondensation processes for more than 1 h. Using this technique, we detect transient and nanoscopic chromatin condensation events occurring on a time scale of a few seconds. Label-free DYNAMICS imaging offers the opportunity to investigate chromatin conformational dynamics and to explore their significance in various gene activities.
Link to the paper: https://pubs.acs.org/doi/10.1021/acsnano.1c09748
Recommended in Faculty Opinion: https://facultyopinions.com/prime/741388510
Reported by Science Promotion & Engagement Center: https://spec.ntu.edu.tw/20220322-research-chem/
Link to the paper: https://pubs.acs.org/doi/10.1021/acsnano.1c09748
Recommended in Faculty Opinion: https://facultyopinions.com/prime/741388510
Reported by Science Promotion & Engagement Center: https://spec.ntu.edu.tw/20220322-research-chem/
ACS Photonics 8(2), 592–602 (2021)
Light absorption is a common phenomenon in nature, but accurate and quantitative absorption measurement at the nanoscale remains challenging especially in the application of widefield imaging. Here, we demonstrated optical widefield interferometric photothermal microscopy that allowed us to visualize and quantify the heat generation of single nanoparticles. The working principle was to measure the scattering signal due to the refractive index change of the surrounding media induced by the dissipated heat (known as the thermal lens effect). The sensitivity of our local heat measurement was a few nanowatts—the high sensitivity made it possible to detect single gold nanoparticles, as small as 5 nm. By changing the particle sizes, we found that, for small metallic nanoparticles (gold and silver nanoparticles < 40 nm), the photothermal signal was determined by the amount of the dissipated heat, independent of the particle size. A model was established to explain our experimental results, indicating that the photothermal signal was essentially contributed by the interferometric detection of the scattered field of the thermal lens. Importantly, on the basis of this model, we further investigated the photothermal signal of large nanoparticles (40–100 nm for our setup) where the scattered light of the particle was considerable relative to the probe light. In this regime, the strong scattered field of the particle effectively served as the main reference beam that interfered with the scattered field of the thermal lens, resulting in an enhanced photothermal signal. Our work illustrates an important fact that the measured photothermal signal is fundamentally affected by the scattering property of the sample. This finding paves the way to accurate and sensitive absorption-based imaging in complex biological samples where the scattering is often spatially heterogeneous.
ACS Nano 13(10), 10918-10928 (2019)
Single-molecule tracking is a powerful method to study molecular dynamics in living systems including biological membranes. High-resolution single-molecule tracking requires a bright and stable signal, which has typically been facilitated by nanoparticles due to their superb optical properties. However, there are concerns about using a nanoparticle to label a single molecule because of its relatively large size and the possibility of cross-linking multiple target molecules, both of which could affect the original molecular dynamics. In this work, using various labeling schemes, we investigate the effects using nanoparticles to measure the diffusion of single-membrane molecules. We demonstrate a simple and robust strategy for the monovalent and oriented labeling of a single lipid molecule with a AuNP by using naturally dimeric rhizavidin (rAv) as a bridge, thus connecting the biotinylated nanoparticle surface and biotinylated target molecule. The rAv–AuNP conjugate shows fast and free diffusion in supported lipid bilayers (2–3 μm2/s for rAv–AuNP sizes of 10–40 nm), which is comparable to the diffusion of dye-labeled lipids, indicating that the adverse size and cross-linking effects are successfully avoided. Our work shows that the measured diffusion of the membrane molecule is highly sensitive to the molecular design of the cross-linker for labeling. The demonstrated approach of monovalent and oriented AuNP labeling provides the opportunity to study single-molecule membrane dynamics at much higher spatiotemporal resolutions and, most importantly, without labeling artifacts.
This work is selected as 2019 Significant Research Achievement of Academia Sinica and reported by ACS Nano Perspective (Yanqi Yu, Miao Li, Yan Yu. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?. ACS Nano 2019, 13 (10) , 10860-10868.)
This work is selected as 2019 Significant Research Achievement of Academia Sinica and reported by ACS Nano Perspective (Yanqi Yu, Miao Li, Yan Yu. Tracking Single Molecules in Biomembranes: Is Seeing Always Believing?. ACS Nano 2019, 13 (10) , 10860-10868.)
Nanoscale 11, 568-577 (2019).
Nanoparticles have been used extensively in biology-related research and many applications require direct visualization of individual nanoparticles under optical microscopy. For long-term and high-speed measurements, scattering-based microscopy is a unique technique because of the stable and indefinite scattering signal. In scattering-based single-particle measurements, large nanoparticles are usually needed in order to generate sufficient signal for detection. However, larger nanoparticle introduces greater mass loading, experiences stronger steric hindrance, and is more prone to crosslinking. In this work, we demonstrate coherent brightfield (COBRI) microscopy with enhanced contrast and show its capability of direct visualization of very small nanoparticles in scattering at high speed. The COBRI microscopy allows us to visualize and track single metallic and dielectric nanoparticles, as small as 10 nm, at 1,000 frames per second. A quantitative relationship between the linear scattering cross section of nanoparticle and its COBRI contrast is reported. Using COBRI microscopy, we further demonstrate tracking of 10 nm gold nanoparticles labeled to lipid molecules in supported bilayer membranes, showing that the small nanoparticle may facilitate single-molecule measurements with reduced perturbation. Furthermore, identical imaging sensitivity of COBRI and interferometric scattering (iSCAT) microscopy, the reflection counterpart of COBRI, is demonstrated under equal illumination intensity. Finally, future improvements in speed and sensitivity of scattering-based interference microscope are discussed.
ACS Photonics 4(7), 1730 (2017).
Localization of single nano-sized light emitter has substantial applications in bioimaging. The accuracy and precision of localization are limited by the noise and the heterogeneous background superimposed on the signal. While the effects of noise are well recognized, influence of background is less addressed. Proper background correction not only provides more accurate localization data but also enhances the sensitivity of detection. Here, we demonstrate a new approach to background correction by estimating and removing the heterogeneous but stationary background from a series of images containing a spatially moving signal. Our approach exploits the correlated signal information encoded in the neighboring pixels governed by the point-spread function of the measurement system. This new approach makes it possible to obtain the background even when the total displacement of the signal is sub-diffraction limit throughout the observation, the scenario where previous methods become invalid. We characterize our approach systematically with different types of signal motions at various signal-to-noise ratios in numerical simulations. We then verify our method experimentally by recovering the nanoscopic displacements of single gold nanoparticle moving in a specified pattern and single virus particle randomly diffusing on a cell surface. The source code of our algorithm written in MATLAB is provided together with a sample data set. Our approach has immediate applications in high-precision optical localization measurements.
目前位置:本所人員 / 研究人員 / 謝佳龍 / 全部研究成果
中央研究院 原子與分子科學研究所版權所有 |
個人隱私權聲明 |
保有個資檔案公開項目彙整表 |
行動版
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:iamspublic@gate.sinica.edu.tw
最後更新於 2025-02-14 15:25:36
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:iamspublic@gate.sinica.edu.tw
最後更新於 2025-02-14 15:25:36