張煥正 博士 (生物物理與分析技術組)
電子郵件:
辦公室:
337
辦公室電話:
+886-2-2366-8260
實驗室:
510, NB11
實驗室電話:
+886-2-2366-8226, +886-2-2366-8249
最新研究成果
Yuen Yung Hui,1,* Yi-Mu Tsui,1,2 Yi-Xiu Tang,1 and Huan-Cheng Chang1,2,3,*
1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
2Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
2Department of Chemistry, National Taiwan Normal University, Taipei 106, Taiwan
3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
Adv. Funct. Mater. e13406 (2025).
Nanoscale quantum sensing is playing an increasingly critical role across diverse areas of research, particularly in the rapidly evolving field of semiconductor nanoelectronics. In this work, ultrathin fluorescent nanodiamond (FND) films are developed to function as quantum sensors for in operando measurements of magnetic fields and temperature in semiconductor devices. FNDs are electrically insulating carbon nanomaterials containing nitrogen-vacancy (NV) centers, renowned for their exceptional photostability and distinctive quantum properties. An electrospray deposition method is first established to produce uniform, near-monolayer FND films on bipolar junction transistors (BJTs) and field-effect transistors (FETs) without compromising their performance. Then, optically detected magnetic resonance (ODMR)s is employed to detect magnetic fields and monitor temperature increases as electrical currents are passed through the FND-coated semiconductor chips. Finally, we introduce a technique called FND-based lock-in photoluminescence (PL) thermography, which enables wide-field, real-time temperature sensing and imaging of these actively operating BJTs and FETs with nanometric spatial and millisecond temporal resolution. In comparison to ODMR, this innovative PL thermography method offers enhanced practicality and ease of implementation, making it well-suited for diagnostic applications in semiconductor devices.
目前位置:本所人員 / 研究人員/ 張煥正
中央研究院 原子與分子科學研究所版權所有 |
個人隱私權聲明 |
保有個資檔案公開項目彙整表 |
行動版
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:iamspublic@gate.sinica.edu.tw
最後更新於 2025-12-30 13:24:37
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212 傳真:886-2-2362-0200 電子郵件:iamspublic@gate.sinica.edu.tw
最後更新於 2025-12-30 13:24:37
中央研究院 原子與分子科學研究所