Research Highlights
Dr. Chia-Lung Hsieh
(2024)
Nathan J. Brooks, Chih-Chen Liu, Yan-Hsien Chen, and Chia-Lung Hsieh*
ACS Photonics 11(12), 5239–5250 (2024)
Interferometric scattering (iSCAT) microscopy is currently among the most powerful techniques available for achieving high-sensitivity single-particle localization. This capability is realized through homodyne detection, where interference with a reference wave offers the promise of exceptionally precise three-dimensional (3D) localization. However, the practical application of iSCAT to 3D tracking has been hampered by rapid oscillations in the signal-to-noise ratio (SNR) as particles move along the axial direction. In this study, we introduce a novel strategy based on back pupil plane engineering, wherein a spiral phase mask is used to redistribute the phase of the scattered field of the particle uniformly across phase space, thus ensuring consistent SNR as the particle moves throughout the focal volume. Our findings demonstrate that this modified spiral phase iSCAT exhibits greatly enhanced localizability characteristics. Additionally, the uniform phase distribution enables reliable characterization of the particle’s optical properties regardless of its position. We substantiate our theoretical results with numerical and experimental demonstrations, showcasing the practical application of this approach for high-precision, ultrahigh-speed (20,000 frames per second) 3D tracking and polarizability measurement of freely diffusing nanoparticles as small as 20 nm.
Yi-Ting Chuang and Liang-Yan Hsu*
Phys.Rev. Lett. 133, 128001 (2024).
In this Letter, we unveil an eccentric superradiance phenomenon in molecular aggregates coupled to surface plasmon polaritons. Through the quantization of electromagnetic fields in media, we demonstrate that superradiance can be significantly enhanced by polaritons and its behavior distinguishably surpasses the Dick's 𝑁 scaling law. To understand the mechanism of this anomalous phenomenon, we derive an analytical expression of the superradiance rate, which is general for molecular aggregates in arbitrary dispersive and absorbing media. Furthermore, we demonstrate the importance of intermolecular distance for this extraordinary superradiance.
Yu-Chen Wei* and Liang-Yan Hsu*
J. Phys. Chem. Lett., 15, 7403−7410 (2024).
Catalyzing reactions effectively by vacuum fluctuations of electromagnetic fields is a significant challenge within the realm of chemistry. As opposed to most studies based on vibrational strong coupling, we introduce an innovative catalytic mechanism driven by weakly coupled polaritonic fields. Through the amalgamation of macroscopic quantum electrodynamics (QED) principles with Marcus electron transfer (ET) theory, we predict that ET reaction rates can be precisely modulated across a wide dynamic range by controlling the size and structure of nanocavities. Compared to QED-driven radiative ET rates in free space, plasmonic cavities induce substantial rate enhancements spanning the range from 103- to 10-fold. By contrast, Fabry–Perot cavities engender rate suppression spanning the range from 10–2- to 10–1-fold. This work overcomes the necessity of using strong light–matter interactions in QED chemistry, opening up a new era of manipulating QED-based chemical reactions in a wide dynamic range.
Nano Letters 24, 1, 67 (2024)
Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored W5N6 over lower metal nitrides. Comprehensive structural and electronic characterization reveals that monolayer W5N6 can be synthesized at large scale and shows semimetallic behavior with an intriguing indirect band structure. Moreover, the material exhibits exceptional resilience against mechanical damage and chemical reactions. Leveraging these electronic properties and robustness, we demonstrate the application of W5N6 as atomic-scale dry etch stops that allow the integration of high-performance 2D materials contacts. These findings highlight the potential of 2D transition metal nitrides for realizing advanced electronic devices and functional interfaces.
ACS Nano 18, 19828 (2024)
The edges of 2D materials have emerged as promising electrochemical catalyst systems, yet their performance still lags behind that of noble metals. Here, we demonstrate the potential of oriented electric fields (OEFs) to enhance the electrochemical activity of 2D materials edges. By atomically engineering the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon, strong and localized OEFs were realized as confirmed by simulations and spatially resolved spectroscopy. The observed fringing OEF results in an enhancement of the heterogeneous charge transfer rate between the edge and the electrolyte by 2 orders of magnitude according to impedance spectroscopy. Ab initio calculations indicate a field-induced decrease in the reactant adsorption energy as the origin of this improvement. We apply the OEF-enhanced edge reactivity to hydrogen evolution reactions (HER) and observe a significantly enhanced electrochemical performance, as evidenced by a 30% decrease in Tafel slope and a 3-fold enhanced turnover frequency. Our findings demonstrate the potential of OEFs for tailoring the catalytic properties of 2D material edges toward future complex reactions.