跳到主要內容
 
:::

許良彥 博士 研究成果

奈米電子學與理論化學物理實驗室
電 子  郵 件:點此顯示(開新頁)
辦    公    室:R362
辦公室電話:+886-2-2362-4962
實    驗    室:
實驗室電話:
跳至第 [ 1 ] [ 2 ] [ 3 ] 頁
第1頁


Liang-Yan Hsu*
J. Phys. Chem. Lett., 16, 1604−1619 (2025).
Chemistry Meets Plasmon Polaritons and Cavity Photons: A Perspective from Macroscopic Quantum Electrodynamics
The interaction between light and molecules under quantum electrodynamics (QED) has long been less emphasized in physical chemistry, as semiclassical theories have dominated due to their relative simplicity. Recent experimental advances in polariton chemistry highlight the need for a theoretical framework that transcends traditional cavity QED and molecular QED models. Macroscopic QED is presented as a unified framework that seamlessly incorporates infinite photonic modes and dielectric environments, enabling applications to systems involving plasmon polaritons and cavity photons. This Perspective demonstrates the applicability of macroscopic QED to chemical phenomena through breakthroughs in molecular fluorescence, resonance energy transfer, and electron transfer. The macroscopic QED framework not only resolves the limitations of classical theories in physical chemistry but also achieves parameter-free predictions of experimental results, bridging quantum optics and material science. By addressing theoretical bottlenecks and unveiling new mechanisms, macroscopic QED establishes itself as an indispensable tool for studying QED effects on chemical systems.
Chih-En Shen, Hung-Sheng Tsai, Liang-Yan Hsu*
J. Chem. Phys. 162, 034107 (2025).
Non-Adiabatic Quantum Electrodynamic Effects on Electron–Nucleus–Photon Systems: Single Photonic Mode vs Infinite Photonic Modes [Feature Article]
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J. Phys. Chem. Lett. 14, 5924 (2023)], we extend the theory of the QED-NAE rate from a single cavity photonic mode to infinite photonic modes and calculate the QED-NAE rates of 9-cyanoanthracene at the first-principles level. To avoid the confusion, the quantum electrodynamic internal conversion process is renamed as “QED-NAE” in our present work. According to our theory, we identify three key factors influencing the QED-NAE processes: light–matter coupling strength (mode volume), mass-weighted orientation factor, and photonic density of states. The mode volume is the primary factor causing rate differences between the two scenarios. In a single cavity with a small mode volume, strong light–matter coupling strength boosts QED-NAE rates. In contrast, in free space with infinite photonic modes, weak coupling strength significantly reduces these rates. From a single cavity photonic mode to infinite photonic modes, the mass-weighted orientation factor only causes an 8π/3-fold increase in the QED-NAE rate. In free space, the photonic density of state exhibits a flat and quadratic distribution, which slightly reduces the QED-NAE rate. Our study shows that cavities can significantly enhance non-adiabatic QED effects while providing a robust analysis demonstrating that QED vibronic effects can be safely ignored in free space.
Yi-Ting Chuang and Liang-Yan Hsu*
Phys.Rev. Lett. 133, 128001 (2024).
Anomalous Giant Superradiance in Molecular Aggregates Coupled to Polaritons
In this Letter, we unveil an eccentric superradiance phenomenon in molecular aggregates coupled to surface plasmon polaritons. Through the quantization of electromagnetic fields in media, we demonstrate that superradiance can be significantly enhanced by polaritons and its behavior distinguishably surpasses the Dick's 𝑁 scaling law. To understand the mechanism of this anomalous phenomenon, we derive an analytical expression of the superradiance rate, which is general for molecular aggregates in arbitrary dispersive and absorbing media. Furthermore, we demonstrate the importance of intermolecular distance for this extraordinary superradiance.
Yu-Chen Wei* and Liang-Yan Hsu*
J. Phys. Chem. Lett., 15, 7403−7410 (2024).
Wide-Dynamic-Range Control of Quantum-Electrodynamic Electron Transfer Reactions in the Weak Coupling Regime
Catalyzing reactions effectively by vacuum fluctuations of electromagnetic fields is a significant challenge within the realm of chemistry. As opposed to most studies based on vibrational strong coupling, we introduce an innovative catalytic mechanism driven by weakly coupled polaritonic fields. Through the amalgamation of macroscopic quantum electrodynamics (QED) principles with Marcus electron transfer (ET) theory, we predict that ET reaction rates can be precisely modulated across a wide dynamic range by controlling the size and structure of nanocavities. Compared to QED-driven radiative ET rates in free space, plasmonic cavities induce substantial rate enhancements spanning the range from 103- to 10-fold. By contrast, Fabry–Perot cavities engender rate suppression spanning the range from 10–2- to 10–1-fold. This work overcomes the necessity of using strong light–matter interactions in QED chemistry, opening up a new era of manipulating QED-based chemical reactions in a wide dynamic range.
Hung-Sheng Tsai, Chih-En Shen, Sheng-Chieh Hsu, and Liang-Yan Hsu*
J. Phys. Chem. Lett. 14, 25, 5924–5931 (2023).
Effects of Non-Adiabatic Electromagnetic Vacuum Fluctuations on Internal Conversion
To explore non-adiabatic effects caused by electromagnetic (EM) vacuum fluctuations in molecules, we develop a general theory of internal conversion (IC) in the framework of quantum electrodynamics and propose a new mechanism, “quantum electrodynamic internal conversion” (QED-IC). The theory allows us to compute the rates of the conventional IC and QED-IC processes at the first-principles level. Our simulations manifest that, under experimentally feasible weak light–matter coupling conditions, EM vacuum fluctuations can significantly affect IC rates by an order of magnitude. Moreover, our theory elucidates three key factors in the QED-IC mechanism: the effective mode volume, coupling-weighted normal mode alignment, and molecular rigidity. The theory successfully captures the nucleus–photon interaction in the factor “coupling-weighted normal mode alignment”. In addition, we find that molecular rigidity plays a totally different role in conventional IC versus QED-IC rates. Our study provides applicable design principles for exploiting QED effects on IC processes.
Yu-Chen Wei and Liang-Yan Hsu*
Journal of Physical Chemistry Letters, 14, 9, 2395–2401 (2023).
Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media
The Huang–Rhys (HR) factor, a dimensionless factor that characterizes electron–phonon (vibronic) coupling, has been extensively employed to investigate a variety of material properties. In the same spirit, we propose a quantity called the polaritonic HR factor to quantitatively describe the effects of (i) light–matter coupling induced by permanent dipoles and (ii) dipole self-energy. The former leads to polaritonic displacements, while the latter is associated with the electronic coupling shift named reorganization dipole self-coupling. In the framework of macroscopic quantum electrodynamics, our theory can evaluate the polaritonic HR factor, reorganization dipole self-coupling, and modified light–matter coupling strength in an arbitrary dielectric environment without free parameters, whose magnitudes are in good agreement with the previous experimental results. We believe that this study provides a useful perspective on understanding and quantifying light–matter interactions in media.
 
目前位置:本所人員 / 研究人員 / 許良彥 / 全部研究成果
中央研究院 原子與分子科學研究所版權所有 |  個人隱私權聲明 |  保有個資檔案公開項目彙整表  |  行動版
地址: 106319 台北市羅斯福路四段一號 或 106923 臺北臺大郵局 第23-166號信箱
電話:886-2-2362-0212    傳真:886-2-2362-0200    電子郵件:iamspublic@gate.sinica.edu.tw
最後更新於 2025-04-30 14:15:19
回到最上層