The $\tilde{A}^{1}Pi_{u}, 0\;1\;1 (\Delta u)$ vibrational level of C_3

K.-S. Chena, G. Zhanga,1, A.J. Merera,b, Y.-C. Hsua,*, W.-J. Chena,2

a Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
b Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1

ABSTRACT

A new band at $23\;390\;\text{cm}^{-1}$ in the $\tilde{A}^{1}Pi_{u}$--$\tilde{X}^{1}Sigma_{u}^{+}$ electronic transition of C_3 has been recorded by laser-induced fluorescence at high resolution and rotationally analyzed. Based on the agreement of the lower state constants with infra-red data given by Kawaguchi et al. [9], the vibrational assignment is found to be $0\;1\;1 (\Pi_{u})$--$0\;0\;0 (\Sigma_{u}^{+})$. Seventeen of the 19 vibronic levels of the $\tilde{A}^{1}Pi_{u}$ state expected to lie below $25\;700\;\text{cm}^{-1}$ (a vibrational energy of $1025\;\text{cm}^{-1}$) have now been identified.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The 405 nm system of $\text{C}_3 (\tilde{A}^{1}Pi_{u}--\tilde{X}^{1}Sigma_{u}^{+})$ is one of the most prominent features in the spectra of comets [1] and has recently been discovered in spectra of the interstellar medium [2,3]. The rotational structure of the system is complicated by perturbations, which have led to some confusion. For instance, the $\tilde{A}^{1}Pi_{u}$--$0\;0\;0$ vibrational level is perturbed at low J values by two “dark” levels, one of which appears to belong to a triplet electronic state [4–7].

In order to observe the $0\;0\;0$--$1\;0\;0$ band (at $23\;451\;\text{cm}^{-1}$) it was necessary to generate “hot” C_3 molecules with an increased population in the ground state $1\;0\;0$ level, which lies at $1224.49\;\text{cm}^{-1}$. This was achieved by photolysis of a mixture of 8% allene, 52% argon and 40% neon, using $193\;\text{nm}$ radiation from an ArF laser. It was found that a gas mixture richer in allene favored higher vibrational temperatures. While scanning the region of the $0\;0\;0$--$1\;0\;0$ band using “hot” C_3 molecules, bands were also found at $23\;384$ and $23\;390\;\text{cm}^{-1}$. The band at $23\;384\;\text{cm}^{-1}$ turned out to be the $1\;2\;1 (~\tilde{A}^{1}Pi_{u})$--$1\;0\;1 (~\tilde{X}^{1}Sigma_{u}^{+})$ band, previously assigned by Baker et al. [8], but the $23\;390\;\text{cm}^{-1}$ band was new. It forms the subject of this article.

2. Results

Fig. 1 illustrates the central part of the $23\;390\;\text{cm}^{-1}$ band, as recorded with the frequency-doubled output of a pulse-amplified Ti:sapphire ring laser. Since this laser system was in a different room from the apparatus recording the C_3 spectrum, the light from it had to be carried by a 50 m long optical fiber, which has resulted in the rolling baseline and the spectral broadening of the figure. Rotational analysis shows that lines with both odd and even J values are present in all three branches. Since half the lines are missing in a band of C_3, because of the zero nuclear spins of the equivalent carbon atoms, this implies that neither the upper nor the lower state is a Σ vibronic level. The first lines of the branches in fact show that the band is of Δ--Π type. The line assignments are given in Table 1, along with the derived rotational constants.

The lower state vibrational assignment follows from the B values of the l-type doubling components, which are found to be $0.4539\;\text{cm}^{-1}$ (odd J) and $0.4456\;\text{cm}^{-1}$ (even J). Since the odd J levels have the higher B value, which is the opposite of what is found in the $0\;1\;0 (\Pi_{g})$ level, the lower state must be a Π_{u} level, not a Π_{g} level. A good match was then found with the infra-red data of Kawaguchi et al. [9] for the $0\;1\;1 (\Pi_{g})$ level, where the B values of the l-type doubling components are given as 0.4540 and $0.4458\;\text{cm}^{-1}$, respectively.

The upper state must then be a Δu level. Its energy, $25468.23\;\text{cm}^{-1}$, is given by the sum of the band origins of the Δu--$0\;1\;1 (\Pi_{g})$ band (from Table 1), the $0\;1\;1 (\Pi_{g})$--$0\;0\;0 (\Sigma_{u}^{+})$ band, from Ref. [9] and the $0\;1\;0 (\Pi_{g})$--$0\;0\;0 (\Sigma_{u}^{+})$ band, from Ref. [10]. This energy corresponds to a vibrational energy of $792.6\;\text{cm}^{-1}$ in
the upper electronic state. The vibrational level must have an odd number of quanta of \(m_3 \), in order for the \(D \) upper state to have \(u \) symmetry, rather than \(g \) symmetry as in the \(\tilde{A} \), 0 1 0 level. Since the \(m_0 = 0 \) fundamental (at 541.7 cm\(^{-1}\)) is the only level of the 00\(v_3 \) manifold with \(v_3 = \text{odd} \) lying below 792.6 cm\(^{-1}\), \([11,12]\) the upper state must have \(v_3 = 1 \) together with 250.9 cm\(^{-1}\) of additional vibrational energy. Given that the 0 1 0 (\(\Delta \)) level of the \(\tilde{A} \) state lies 259.0 cm\(^{-1}\) above the 0 0 0 (\(\Pi \)) level, the assignment of the new level can only be 0 1 1 (\(D \)).

The only rotational perturbation that has been found in the band affects the Q(11) line, which has been displaced to higher frequency by 0.11 cm\(^{-1}\). The perturbing state is not a level of the \(\tilde{A} \Pi_u \) state because the nearest level of that state, 0 4 0 (\(\Pi_u \)), lies 25 cm\(^{-1}\) below, which is too far away for it to be a possible perturber.

With the 0 1 1 (\(\Delta_u \)) level assigned, 17 of the 19 excited vibronic levels of the \(\tilde{A} \Pi_u \) state expected below 25 700 cm\(^{-1}\) (a vibrational energy of 1025 cm\(^{-1}\)) have now been found \([4,11–13]\). The highly irregular course of these levels, which results from the orbital angular momentum of the \(\tilde{A} \Pi_u \) state, is illustrated by the energy level diagram of Fig. 2. The levels that have yet to be found are 0 4 0 (\(\Pi_u \)) and 0 1 1 (\(R \)). They are marked with dashed lines in the figure, and rough estimated positions for them are given in parentheses.

Acknowledgments

We are grateful for financial support from Academia Sinica and the National Science Council of Taiwan, ROC (NSC 95-2113-M-001-036 and NSC 96-2113-M-001-021-MY2). AJM thanks the Natural
Fig. 2. The vibrational levels of the $^{1}Π_u$ state of C$_4$ lying below 25 700 cm$^{-1}$. Full lines indicate observed levels, from this work and Refs. [4,11–13]; dashed lines indicate predicted levels that have not been observed so far. The levels are grouped according to their vibrational quantum numbers, shown at the top of the figure.

References