跳到主要內容
 
:::

研究成果 - 謝雅萍 博士

尖端材料與表面科學組
謝雅萍 博士
材料物理及光電元件實驗室
主持人:謝雅萍 博士
電子郵件:點此顯示(開新頁)
辦公室:205
辦公室電話:+886-2-2366-8205
實驗室:218
實驗室電話:+886-2-2366-8218
Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields
ACS Nano 18, 19828 (2024)
Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields
The edges of 2D materials have emerged as promising electrochemical catalyst systems, yet their performance still lags behind that of noble metals. Here, we demonstrate the potential of oriented electric fields (OEFs) to enhance the electrochemical activity of 2D materials edges. By atomically engineering the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon, strong and localized OEFs were realized as confirmed by simulations and spatially resolved spectroscopy. The observed fringing OEF results in an enhancement of the heterogeneous charge transfer rate between the edge and the electrolyte by 2 orders of magnitude according to impedance spectroscopy. Ab initio calculations indicate a field-induced decrease in the reactant adsorption energy as the origin of this improvement. We apply the OEF-enhanced edge reactivity to hydrogen evolution reactions (HER) and observe a significantly enhanced electrochemical performance, as evidenced by a 30% decrease in Tafel slope and a 3-fold enhanced turnover frequency. Our findings demonstrate the potential of OEFs for tailoring the catalytic properties of 2D material edges toward future complex reactions.
link: 相關連結
 
目前位置:本所人員 / 研究人員 / 謝雅萍 / 研究成果
回到最上層