Ion trap mass spectrometer

Trajectory includes a fast oscillation and A slow oscillation.

Frequency of slow oscillation is mass dependent.

m/z detection: applied the RF with the frequency of slow oscillation to m/z ions

 $a_u=0.0$, $q_u=0.2$, $x_0=0.01$ cm, mass=200 amu, sec. freq.=0.071 MHz, quadrupole phase=0, dipole phase=0

Linear (2D) ion trap

3D ion trap

Fourier-transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS)

- The most complex method of mass analysis and detection, although the principle is simple
- Spatial uniform static superconducting high field magnet (typically 4.7 to 13 Tesla)
- Cooled by liquid helium and liquid nitrogen
- 10⁻¹⁰~10⁻¹¹ Torr, 10K
- Resolution: 10^5 to 10^6 , and $>10^7$ is possible

F = qVxB

ω=qB/(2πm)

 $m/z = m/q = B/(2\pi\omega)$

B

Orbitrap mass analyzer

- Electric field
- Resolution 10⁴

Detectors

- 1. Charge particle
- 2. Frequency

Charge detector:

Faraday-cup: >10⁻¹⁴ A or 10⁵ charges Number of charge particle > noise

Electron multiplier

Conversion dynode

Electron multiplier

channeltron

Channel Electron Multiplier (CEM)

Burle channeltron

Parameters		Analog	Pulsed
1.	Pulse Width		18-20 nSec
2.	Rise Time		3-5 nSec
3.	Dark Count Rate	<.05 cps	<.05 cps
4.	Linerarity	~10% of bias currer	nt
5.	Bias Current	25-46µA	15-3µA
6.	Maximum Count Rate		10 ⁷ cps
7.	Gain @ 3000V	>107	>10 ⁸
8.	FWHM		<75%

Channeltrons:

- Channeltrons: typical 10⁻⁵ Torr or lower. Higher pressure
 - operation is observed to increase the background current and can result in shortened life.
- Some channeltrons (Photonics) can operate at 10⁻² Torr.
- Channeltrons are customarily operated at 1500 to 3000 volts.

Microchannel plate (MCP) detector: high gain, high spatial resolution and high temporal resolution Single ion, electron, or photon detection

MCP detector

1) A Converter - a mechanism to convert initial particles in photons or electrons,

2) An Assembly of MCPs - a mechanism to amplify initial single electron or photon event into electron pulse.

3) A Readout Device - a mechanism to detect the electron avalanche.

Converter

Photocathodes: for visible and IR radiation.

MCP is directly sensitive to ultraviolet rays (VUV, UV), X-rays

Assembly

Single: low-level light

Double (so-called Chevron or V-stack): TOF-MS ion detector

Triple (Z-stack): image single particles

Readout Device

- Detection (e.g. mass-spectrometry): single metal
- Imaging with low temporal resolution: phosphor screen (P20, P22, P46, etc.) coupled with CCD. Gate >10 nanoseconds.
- Imaging with moderate and high temporal resolution: anode configurations have been developed that fall into the following classes:
 - Resistive anodes (one and two dimensional)
 - Wedge and strip designs
 - Delay-Line-Readout

phosphor screen

Time resolved image: 1. Phosphor

2. Camera

Applications

Applications to crossed molecular beam experiments

Crossed molecular beam apparatus

Detection of chemicals Gas chromatography coupled to mass spectrometry (GC-MS)

Chemicals are separated by GC, and identified by

- 1. Retention time
- 2. Mass spectra

Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) using a triple quadrupole (QqQ) analyzer

- Single stage MS: molecular weight, cannot distinguish isomers
- Tandem MS: isomers (different structures) have different fragmentation

Q1 (mass filter)	Q2 (collision cell)	Q3 (mass filter)	Detector

Vaporized chemicals

- 1. pesticides in food, water, soil, ... Sensitivity: 2 $\mu g \; kg^{\text{-1}}$
- 2. volatile organic compounds (VOCs) in air

Applications to imaging

- 1. Velocity distributions of ions
- 2. Spatial distributions of chemicals on solid samples (e.g., tissue)

Time of Flight mass spectrometer / Velocity map ion imaging

 $I_2 + hv \rightarrow I$ (quantum state 1) + I (quantum state 2)

MALDI + TOF mass spectrometer

• Sample plate is moved perpendicular to TOF axis

Application to biomolecules

- Non volatile
- Unstable at high temperature

The four major classes of molecules creating life

- 1. Nucleic acid (核酸)
- 2. Protein (蛋白質)
- 3. Carbohydrate (碳水化合物)
- 4. Lipid (脂質)

- macromolecules

Application to Proteins

Sequence of insulin

胰島素

(From Wikipedia)

In 1958, Frederick Sanger was awarded a Nobel Prize in chemistry "for his work on the <u>structure of proteins</u>, especially the sequence of insulin (胰島素).

(From Wikipedia)

Two consecutive amino acids are linked by a peptide bond.

Protein sequence determined by mass spectrometry

Four amino acids

Protein sequencing by mass spectrometry

Molecular weight

Different Mass spectra

Carbohydrates

Carbohydrates (glycans, saccharides, sugars) 碳水化合物 聚醣 醣類 糖

Carbohydrates play important roles in the interaction between

- cell-cell
- cell-bacterial
- cell-virus

cell-virus interaction

From: Current Opinion in Structural Biology, 2016, 40, 153

Carbohydrates are macromolecules containing a number of monosaccharides (單醣)

Disaccharides: 2 monomers 雙醣

Trisaccharides: 3 monomers 三醣

Oligosaccharides: < 10 monomers 寡糖

Polysaccharides: \geq 10 monomers

Three common monosaccharides of hexoses (Hex) 六碳糖

Anomers (anomeric configurations)

Linkage between monosaccharides

Glucose disaccharide

11 isomers

Linear trisaccharides

Branched trisaccharides

Number of isomers

Glucose, Galactose, Mannose

Disaccharide: 99

Trisaccharide: > 2700

Tetrasaccharide: > 8x10⁴

Pentasaccharide: > 2x10⁶

Hexosaccharide: > 6x10⁷

- Isomer barrier
- Challenge for structural determination, synthesis, separation!

What are the structures to be determined?

- Linkage position
- Anomeric configuration
- Stereoisomer
- Sequence

Traditional methods

- 1. Chemical reactions + enzyme digestion
- 2. Nuclear Magnetic Resonance Spectroscopy

Time and sample consuming

Sensitivity

Mass spectrometry : NMR/wet chemistry 10000~1000 : 1

Conventional Mass Spectrometry

- Multistage tandem mass spectroscopy
- CID, HCD, electron transfer, electron attachment, photodissociation, ...
- Sample pretreatment: reduction and permethylation
- H⁺, Li⁺, Na⁺, K⁺, Cs⁺, Mg⁺, Cu⁺, Pb⁺..., e⁻, Cl⁻, NO₃⁻, ...
- Linkage position Yes

• Anomer No

- Stereoisomer No
- Sequence Yes/No

A report from United States National Academy of Sciences in 2012:

Call for the development of technology over the next 10 years to purify, identify, and determine the structures of all the important glycoproteins, glycolipids, and polysaccharides in any biological sample.

^a National Research Council (US) Committee on Assessing the Importance and Impact of Glycomics and Glycosciences: Transforming Glycoscience: A Roadmap for The Future. National Academies Press, Washington, DC (2012)

Conventional Mass Spectrometry

- Multistage tandem mass spectroscopy
- CID, HCD, electron transfer, electron attachment, photodissociation, ...
- Sample pretreatment: reduction and permethylation
- H⁺, Li⁺, Na⁺, K⁺, Cs⁺, Mg⁺, Cu⁺, Pb⁺..., e⁻, Cl⁻, NO₃⁻, ...
- Linkage position Yes
- Anomer No
- Stereoisomer No
- Sequence Yes/No

Our New Mass Spectrometry

- Multistage tandem mass spectroscopy
- Low energy CID
- No sample pretreatment, Li⁺, Na⁺,
- In some cases, ¹⁸O labelled

- Linkage position **Yes**
- Anomer Yes
- Stereoisomer Yes
- Sequence Yes

HPLC-ESI-MS

• HPLC (Thermo Fisher Scientific)

• Linear ion trap mass spectrometer (LTQ XL, Thermo Fisher Scientific)

Dissociation mechanism: dehydration

Determination of anomeric configuration at reducing end

Dissociation mechanism: dehydration

Glycosidic bond cleavage

α -Maltose

α -Cellobiose

