陳貴賢
電子郵件 chenkh@pub.iams.sinica.edu.tw
辦公室 228
辦公室電話 +886-2-2366-8232
實驗室 NB03, 台大凝態中心-1002,1014,1016
實驗室電話 +886-2-3366-5231
學歷
經歷
研究興趣
榮譽及獎項
代表作

Highlights:
1. “Catalytic growth and characterization of gallium nitride nanowires,” C.C. Chen et al., J. Am. Chem. Soc. 123, 2791-2798 (2001).  [IF=11.444, Citations=390, former highly cited paper]
2. “Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes,” J.J. et al., Appl. Phys. Lett. 81, 1312-1314 (2002).  [IF=3.515, Citations=268, former highly cited paper]
3. “Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity,” C.L. Sun et al., Chem. of Mater. 17, 3749-3753 (2005).  [IF=8.535, Citations=145, highly cited paper]
4. “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” M.S. Hu et al., Nature Materials 5, 102-106 (2006).  [IF=32.841, Citations=169, highly cited paper and fast breaking paper]
5. “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” C.W. Chen et al., Appl. Phys. Lett. 88, 241905-(1-3) (2006).   [IF=3.515, Citations=108, highly cited paper]
6. “High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC,” C.H. Wang et al., J. Power Sources 171, 55-62 (2007).  [IF=5.211, Citations=78, highly cited paper]
7. “Improved broadband, and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Y.F. Huang et al., Nature Nanotechnology 2, 770-774 (2007).    [IF=27.670, Citations=413, highly cited paper]
8. “Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance,” Y.Y. Horng et al., J. Power Sources 195, 4418-4422 (2010). [IF=5.211, Citations=74, highly cited paper]
9. “Anti-reflecting and photonic nanostructures,” S. Chattopadhyay et al., an invited review article in A.G. Cullis and S.S. Lau, Eds., Materials Science and Engineering Report, Elsevier 69, 1-35 (2010). [IF=12.940, Citations=123, highly cited paper]
10. “Multi-wall carbon nanotubes coated with polyaniline,” E.N. Konyushenko et al., Polymer 47, 5715-5723 (2006).  [IF=4.224, Citations=150]
11. “Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method,” Y.Y. Lee et al., ACS Nano 5, 6564 (2011). [IF=12.033, Citations=53]
12. “Tunable photoluminescence from graphene oxide,” C.T. Chien et al., Angew. Chem. Int. Ed. 51, 6662-6666 (2012). [IF=11.848, Citations=69]
13. “Graphene oxide as a promising photocatalyst for CO2 to methanol conversion,” H.C. Hsu et al., Nanoscale 5, 262-268 (2013). [IF=6.739, Citations=18]
14. “Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-NPs decorated graphene oxide,” I. Shown et al., Nano Letters (accepted, 2014).
 


Categorized Publications
Diamond Films:
1. “Temperature and Density Distribution of H2 and H in Hot Filament CVD of Diamond Films,” K.H. Chen et al., J. Appl. Phys. 71, 1485 (1992).
2. "Traveling Wave Method for Measurement of Thermal Conductivity of Thin Films," D.M. Bhusari et al., Rev. Sci. Instrum. 68(11), 4180 (1997).
3. “Quantum confinement effect in diamond nanocrystals studied by X-Ray- absorption spectroscopy,” Y.K. Chang et al., Phys. Rev. Lett. 82, 5377 (1999).
4. “Mechanical Properties of Nanocrystalline Diamond Films,” Z.H. Shen et al., J. Appl. Phys. 99, 124302 (2006).
SiCN Compound Semiconductor:
5. "Crystalline silicon carbon nitride: a wide band gap semiconductor," L.C. Chen et al., Appl. Phys. Lett. 72, 2463 (1998).
6. “Structure and elastic properties of amorphous SiCN films,” G. Lehmann et al., Phys. Rev. B64, 165305 (2001).

III-Nitride Semiconductors:
7. “Catalytic growth and characterization of gallium nitride nanowires,” C.C. Chen et al., J. Am. Chem. Soc. 123, 2791-2798 (2001).  [IF=11.444, Citations=390, former highly cited paper]
8. “Homonanojunction (GaN) and heteronanojunction (InN) nanorods on 1-dimensional GaN nanowire substrates,” Z. H. Lan et al., Adv. Func. Mater. 14, 233 (2004).
9. “Molecular sensing with ultrafine silver crystals on hexagonal aluminum nitride nanorod,” S. Chattopadhyay et al., J. Am. Chem. Soc. 127, 2820 (2005).
10. “Direct evidence of nanocluster-induced luminescence in InGaN epifilms,” H. J. Chang et al., Appl. Phys. Lett. 86, 021911-(1-3) (2005).
11. “Sharp Infrared Emission from Single-crystalline Indium Nitride Nanobelts Derived by Guided-stream Thermal Chemical Vapor Deposition,” M.H. Hu et al., Adv. Func. Mater. 16, 537 (2006).
12. “Photoluminescence Spectroscopy of Nearly Defect-free InN Microcrystals Exhibiting Nondegenerate Semiconductor Behaviors,” C.L. Hsiao et al., Appl. Phys. Lett. 91, 181912 (2007).
13. “Anomalous Optical Properties of InN Nanobelts: Evidence of Surface Band Bending and Photoelastic Effect”, S.P. Fu et al., Adv. Mater., 19, 4524 (2007).
14. “High-phase-purity Zinc-blende InN on R-plane Sapphire Substrate with Controlled Nitridation Pretreatment,” C.L. Hsiao et al., Appl. Phys. Lett. 92, 111914 (2008).
15. “Optical properties of functionalized GaN nanowires,” C.W. Hsu et al., J. Appl. Phys. 109, 053523 (2011).
16. “Magnetic-field and temperature dependence of the energy gap in InN nanobelt,” K. Aravind, Y. W. Su et al., AIP Advances 2, 012155 (2012).

CNTs for Catalyst Support:
17. “Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition,” L. C. Chen et al., Adv. Fun. Mate. 12, 687-692, (2002).
18. “Ultrafine platinum nanoparticles uniformly dispersed on arrayed CNx nanotubes with high electrochemical activity,” C.L. Sun et al., Chem. of Mater. 17, 3749-3753 (2005).  [IF=8.535, Citations=145, highly cited paper]
19. “Multi-wall carbon nanotubes coated with polyaniline,” E.N. Konyushenko et al., Polymer 47, 5715-5723 (2006).  [IF=4.224, Citations=150]
20. “Atomic-Scale Deformation in N-doped Carbon Nanotubes,” C.L. Sun et al., J. Am. Chem. Soc. 128, 8368 (2006).
21. “High Methanol Oxidation Activity of Electrocatalysts Supported by Directly Grown Nitrogen Containing Carbon Nanotubes on Carbon Cloth,” C.H. Wang et al., Electrochimica Acta 52, 1612 (2006).
22. “High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC,” C.H. Wang et al., J. Power Sources 171, 55-62 (2007).  [IF=5.211, Citations=78, highly cited paper]
23. “Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes,” J. Y. Hwang et al., J. Am. Chem. Soc. 130, 3543-3553 (2008).
24. “Low Methanol-Permeable Polyaniline/Nafion Composite Membrane for Direct Methanol Fuel Cell,” C. H. Wang et al., J. Power. Source 190, 279-284 (2009).
25. “High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell,” H.Y. Du et al., J. Mater. Chem. 21, 2512-2516 (2011).
26. “High performance polybenzimidazole-CNT hybrid electrode for high- temperature proton exchange membrane fuel cells,” H.Y. Du et al., J. of Mater. Chem. A 2, 7015-7019 (2014).

Graphene, GO, and Photocatalysis:
27. “Nanostructured ZnO nanorod@Cu nanoparticle as catalyst for microreformers,” Y.G. Lin et al., Angew. Chem. Int. Ed. 48, 7586 (2009).
28. “Efficient hydrogen production using Cu-based catalysts prepared via homogeneous precipitation,” Y.K. Lin et al., J. Mater. Chem. 19, 9186 (2009).
29. “Tunable photoluminescence from graphene oxide,” C.T. Chien et al., Angewandte Chemie 51, 6662-6666 (2012).
30. “Direct assessment of the mechanical modulus of graphene co-doped with low concentrations of boron–nitrogen by a non-contact approach,” S.H. Pan et al., Nanoscale 6, 8635 (2014). [Back Cover]
31. “Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons,” I.J. Chen et al., Nano Letters 14, 1317-1323 (2014).
32. “Band gap engineering of chemical vapor deposited graphene by in-situ BN doping,” C.K. Chang et al., ACS Nano 7, 1333-1341 (2013).
33. “Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-NPs decorated graphene oxide,” I. Shown et al., Nano Letters (accepted, 2014).

Transport, Photovoltaic, and Solar Fuels:
33. “Suppressing series resistance in organic solar cells by oxygen plasma treatment,” C.H. Lin et al., Appl. Phys. Lett. 92, 233302 (2008).
34. “On-chip fabrication of well aligned and contact barrier-free GaN nanobridge devices with ultrahigh photocurrent responsivity,” R. S. Chen et al., Small 4, 925-929 (2008).
35. “Enhanced Charge Separation by Sieve-layer Mediation in High Efficiency Inorganic-organic Solar Cell,” C.H. Lin et al., Adv. Mater. 21, 259-263 (2009).
36. “Enhancement of the energy photoconversion through crystallographic etching of a c-plane GaN film,” A.M. Basilio et al., J. Mater. Chem. 20, 8118 (2010).
37. “Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting,” H.M. Chen et al., Angew. Chem. Int. Ed. 49, 5966-5969 (2010).
38. “Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting,” Y.G. Lin et al., Nanoscale 4, 6515-6519 (2012).
39. “Plasmonic Ag@Ag3PO4 Nanoparticle Photosensitized ZnO Nanorod-Array Photoanodes for Water Oxidation,” Y.G. Lin et al., Energy & Environ. Sci. 5, 8917-8922 (2012).
40. “Enhancing efficiency with fluorinated interlayers in small molecule organic solar cells,” H.C. Han et al., J. Mater. Chem. 22, 22899 (2012).
41. “Stacking orientation mediation of pentacene and derivatives for high open-circuit voltage organic solar cells,” C.T. Chou et al., J. Phys. Chem. Lett. 3, 1079-1083 (2012).
42. “Pyrolyzed cobalt corrole as a potential non-precious catalyst for fuel cells,” H.C. Huang et al., Adv. Func. Mater. 22, 3500-3508 (2012).
43. “Graphene oxide as a promising photocatalyst for CO2 to methanol conversion,” H.C. Hsu et al., Nanoscale 5, 262-268 (2013).
44. “Cobalt-phosphate assisted Zn1-xMoxO nanorod-array photoanodes for enhanced photoelectrochemical water oxidation,” Y.G. Lin et al., ChemSusChem 7, 2748-2754 (2014).
45. “Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-NPs decorated graphene oxide,” I. Shown et al., Nano Letters (accepted, 2014).

Sensors:
45. “Label-free dual sensing of DNA molecules using GaN nanowires,” C. P. Chen et al., Anal. Chem. 81, 36-42 (2009).
46. “Functionalized GaN nanowires-based electrode for direct label-free voltammetric detection of DNA hybridization,” A. Ganguly et al., J. Mater. Chem. 19, 928–933 (2009).
47. “Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection,” Ying-Ying Horng et al., Electrochem. Comm. 11, 850-853 (2009).
48. “Ultrasensitive in situ label-free DNA detection using GaN nanowire-based extended-gate field-effect-transistor sensor,” C.P. Chen et al., Anal. Chem. 83, 1938-1943 (2011).
49. “Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform,” H.C. Lo et al., Biosensors and Bioelectronics 26, 2413-2418 (2011).
50. “Using optical anisotropy as a quality factor to rapidly characterize structural qualities of large-area graphene films,” Y.L. Liu et al., Analytical Chemistry 85, 1605-1614 (2013).
51. “Plasmon management in index engineered 2.5D hybrid nanostructures for SERS,” Y.F. Huang et al., NPG Asia Materials (accepted, 2014).

Supercapacitors:
52. “Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance,” Y.Y. Horng et al., J. Power Sources 195, 4418-4422 (2010). [IF=5.211, Citations=74, highly cited paper]
53. “High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution,” Y.K. Hsu et al., J. Mater. Chem. 22, 3383 (2012).
54. “Direct-growth of poly(3,4-ethylenedioxythiophefne) nanowires/carbon cloth as hierarchical supercapacitor electrode in neutral aqueous solution,” Y.K. Hsu et al., Journal of Power Sources 242, 718-724 (2013).
55. “Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors,” Y.C. Chen et al., Small (DOI: 10.1002/smll.201400597, 2014).
56. “High K nanophase zinc oxide on biomimetic silicon nanotip array as super-capacitors,” H.C. Han et al., Nano Letters 13, 1422-1428 (2013).
57. “Vertically aligned epitaxial graphene nanowalls with dominated nitrogen-doping for superior supercapacitors,” H.F. Yen et al., Carbon (accepted, 2014).

Non-normal Metal Catalysts:
58. “Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells,” S.T. Chang et al., Energy & Environ. Sci. 5, 5305-5314 (2012).
59. “High-performance pyrolyzed iron corrole as potential non-precious metal catalyst for PEMFC,” H.C. Huang et al., J. of Mater. Chem. A 1, 14692 (2013).

Thermoelectrics:
60. “Defect engineering in GeTe-rich germanium antimony telluride with enhanced zT values above 1.4,” C.S. Chi et al., Adv. Func. Mater. (communicated, 2014).
61. “Thermoelectric properties of phase controlled copper sulfide,” L.M. Lyu et al., J. Mater. Chem. (communicated, 2014).
62. “High thermoelectric performance of In-doped-Zn4Sb3 with forming InSb nanosinclusion”, P.C. Wei et al., Nanotechnology (communicated, 2014).

Lithium-ion Battery:
63. “A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion battery,” D.P. Wong et al., Carbon 63, 397-403 (2013).
64. “Binder-free rice husk-based silicon-graphene composite as energy efficient Li-ion battery anodes,” D.P. Wong et al., J. Mater. Chem. A 2, 13437 (2014).

Novel Nanostructures:
65. “Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes,” J.J. et al., Appl. Phys. Lett. 81, 1312-1314 (2002).  [IF=3.515, Citations=268, former highly cited paper]
66. “Generally applicable self-masked dry etching technique for nanotip array fabrication,” C. H. Hsu et al., Nano Letters 4, 471-475 (2004).
67. “Surface-enhanced Raman spectroscopy using self assembled silver nanoparticles on Si nanotips,” S. Chattopadhyay et al., Chem. Mater. 17, 553-559 (2005).
68. “Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime,” C.W. Chen et al., Appl. Phys. Lett. 88, 241905-(1-3) (2006).   [IF=3.515, Citations=108, highly cited paper]
69. “Nanotips: growth, model, and applications,” S. Chattopadhyay, L. C. Chen* and K. H. Chen; An review article in Wolfgang Sigmund, Ed., Critical Reviews in Solid State and Material Science 31, pp. 15-53, Taylor and Francis (2006).
70. “Improved broadband, and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Y.F. Huang et al., Nature Nanotechnology 2, 770-774 (2007).    [IF=27.670, Citations=413, highly cited paper]
71. “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” M.S. Hu et al., Nature Materials 5, 102-106 (2006).  [IF=32.841, Citations=169, highly cited paper and fast breaking paper]
72. “Electroluminescence from ZnO/Si-nanotips light emitting diodes,” Y.P. Hsieh et al., Nano Letters 9, 1839 (2009).
73. “Anti-reflecting and photonic nanostructures,” S. Chattopadhyay et al., an invited review article in A. G. Cullis and S. S. Lau, Eds., Materials Science and Engineering Report, Elsevier 69, 1-35 (2010). [IF=12.940, Citations=123, highly cited paper]
74. “The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications,” M.S. Hu et al., Carbon 49, 4911-4919 (2011).
75. “Energy production and conversion applications of one-dimensional semiconductor nanostructures,” S. Chattopadhyay et al., 3, 74-81 (2011).
76. “Gold nanoparticle-modulated conductivity in gold peapodded silica nanowires,” S.B. Wang et al., Nanoscale. 4, 3660-3664 (2012).
77. “Anomalous quantum efficiency for photoconduction and power dependence in oxide semiconductor nanowires,” R. S. Chen et al., Nanoscale 5, 6867 (2013).
78. “Surface plasmon-enhanced gas sensing in gold peapodded-silica nanowire,” S.B. Wang et al., Asia Materials 5, e49 (DOI: 10.1038/am.2013.17, 2013).
79. “Surface plasmon resonance-induced color-selective Au-peapodded silica nanowire photodetectors with high photoconductive gain,” S.B. Wang et al., Nanoscale 6, 1264-1270 (2014).