Mass spectrometry：principles and applications

Chi－Kung Ni（倪其焜）
Institute of Atomic and Molecular Sciences，Academia Sinica
(中央研究院 原子與分子科學研究所)

徵博士後，博士班，碩士班，研究助理
歡迎有理工，生化背景，對研究有興趣者應徴

研究主題：
（1）建造質譜儀（具機械，電子電路，真空技術背景者尤佳）
（2）生物様品萃取醣分子，質譜鑑定結構（具化學，生化背景者尤佳）

工作地點：中央研究院原子與分子科學研究所 （位於台北市臺灣大學校總區内）

Selected topics from textbook and my handout

Mass Spectrometry：Principles and Applications
Edmond de Hoffmann \＆Vincent Stroobant John Wiley \＆amp；Sons，2007年10月29日 512 頁

Overview of mass spectrometers

in vacuum or

Low vacuum or High vacuum
not in vacuum

11/24 Maas spectra, vacuum technology
12/1 Ionization method
12/8 Mass analyzer, ion detection
12/15 Applications

Evaluation: quiz, $20 \mathrm{~min} /$ close book in 12/1, 12/8, 12/15.

Mass spectrum

Mass spectra only provide information of m / z

- How to obtain molecular weight?
- How to obtain charge value?

Mass number 質量數

The mass number，also called the nucleon number，is the number of protons and neutrons in an atomic nucleus．

The mass number is unique for each isotope of an element and is written either after the element name or as a superscript to the left of an element＇s symbol．

For example，carbon－12 $\left({ }^{12} \mathrm{C}\right)$ has 6 protons and 6 neutrons．

Molecular mass

The molecular mass (abbreviated Mr) of a substance, formerly also called molecular weight and abbreviated as MW, is the mass of one molecule of that substance, relative to the unified atomic mass unit u (equal to $1 / 12$ the mass of one atom of 12 C).

The dalton or unified atomic mass unit (symbols: Da or \mathbf{u}) is a nonSI unit of mass defined as $1 / 12$ of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest

Nominal mass

The nominal mass for an element: the mass number of its most abundant naturally occurring stable isotope.
The nominal mass for a molecule: sum of the nominal masses of the constituent atoms.

Carbon: has two stable isotopes 12C at 98.9\% natural abundance and 13 C at 1.1% natural abundance, thus the nominal mass of carbon is 12 Da .

The nominal mass is not always the lowest mass number, for example iron has isotopes $54 \mathrm{Fe}, 56 \mathrm{Fe}, 57 \mathrm{Fe}$, and 58 Fe with abundances 6%, $92 \%, 2 \%$, and 0.3%, respectively, and a nominal mass of 56 Da .

Water H2O nominal mass: is 18 Da .

Average mass
The average mass of a molecule is obtained by summing the average atomic masses of the constituent elements.

For example, the average mass of natural water with formula $\mathrm{H}_{2} \mathrm{O}$ is $1.00794+1.00794+15.9994=18.01528 \mathrm{Da}$.

Exact mass

The exact mass of an isotopic species is obtained by summing the masses of the individual isotopes of the molecule.

For example, the exact mass of water containing two hydrogen-1 $\left({ }^{1} \mathrm{H}\right)$ and one oxygen-16 $\left({ }^{16} \mathrm{O}\right)$ is $1.0078+1.0078+15.9949=$ 18.0105 Da.

The exact mass of heavy water, containing two hydrogen-2 (deuterium or ${ }^{2} \mathrm{H}$) and one oxygen-16 $\left({ }^{16} \mathrm{O}\right)$ is $2.0141+2.0141+$ $15.9949=20.0229$ Da.

Average mass

$12.000 \times 0.9893+13.003355 \times 0.0107$
$=12.0107$

Exact mass
12.000, 13.003355

1 mole $=12.0107 \mathrm{~g}$

Monoisotopic mass

The monoisotopic mass is the sum of the masses of the atoms in a molecule using the most abundant isotope for each element.

For typical organic compounds, where the monoisotopic mass is most commonly used, this also results in the lightest isotope being selected.

For some heavier atoms such as iron and argon the principal isotope is not the lightest isotope.

Most abundant mass

The mass of the molecule with the most highly represented isotope distribution, based on the natural abundance of the isotopes.

HCl

M. W.
${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$
${ }^{2} \mathrm{H}^{35} \mathrm{Cl}$
${ }^{1} \mathrm{H}^{37} \mathrm{Cl}$
${ }^{2} \mathrm{H}^{37} \mathrm{Cl}$

Abundance
$(0.9999) \times(0.7578)=0.7577$
$(0.0001) \times(0.7578)=0.00007$
$(0.9999) \times(0.2422)=0.2421$
$(0.0001) \times(0.2422)=0.00002$
C_{60}
M. W. Abundance

120	$(0.9893)^{60}=0.5244$
121	$\left[(0.9893)^{59} \times(0.01)^{11]} \mathrm{xC}_{1}{ }^{60}=0.32\right.$
122	$\left[(0.9893)^{58} \times(0.01)^{2}\right] \times C_{2}{ }^{60}=0.09$
123	$\left[(0.9893)^{57} \times(0.01)^{3}\right] \times C_{3}{ }^{60}=0.02$

Mass spectrum


```
CO
M. W. Abundance
12}\textrm{C}+\mp@subsup{}{}{16}\textrm{O}+\mp@subsup{}{}{16}\textrm{O
=12.00+15.995x2=43.99
13}\textrm{C}+\mp@subsup{}{}{16}\textrm{O}+\mp@subsup{}{}{16}\textrm{O
=13.00+15.995\times2=44.99
    [(0.01)x(0.9975)\times(0.9975)]=0.01
12}\textrm{C}+\mp@subsup{}{}{16}\textrm{O}+\mp@subsup{}{}{18}\textrm{O
=12.00+15.995+17.99=45.98
13}\textrm{C}+\mp@subsup{}{}{16}\textrm{O}+\mp@subsup{}{}{18}\textrm{O
=13.00+15.995+17.99=46.99
    [(0.9893)\times(0.9975)x(0.9975)] = 0.98
    [(0.9893)x(0.9975)x(0.002)]xC [1 }\mp@subsup{}{}{2}=0.00
    [(0.01) x (0.9975) x(0.002)]xC }\mp@subsup{}{1}{2}=0.0000
    Mass spectrum
MN


Mass


\section*{Isotope Distribution Calculator and Mass Spec Plotter}

Home \(\bullet\) Heaters／Source \(\rightarrow\) Agilent Heaters and Sensors \(\bullet\) Literature \(\xlongequal{\text { MS Online Tools }} \rightarrow\) Isotope Distribution Calculator and Mass Spec Plotter （This Page）


\section*{Mass Spec Tools}

\(1 \mathrm{u}=1 \mathrm{Da}=1.660540 \times 10^{-27} \mathrm{~kg}\)
\(1 \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\)

1Th \((\) Thomson \()=1 u / e=1.036426 \times 10^{-8} \mathrm{~kg} / \mathrm{C}\)

Mass spectrum


Mass spectra only provide information of \(\mathrm{m} / \mathrm{z}\)
- How to obtain molecular weight?
- How to obtain charge value?

\section*{Mass spectrum}

For most organic molecules


\section*{I. Vacuum technology}

- Collision frequency
- Mean free path
- Molecular flow vs viscosity flow

\section*{From gas kinetics}

Velocity in three dimension
\(G(v) d v=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{\frac{-m v^{2}}{2 k T}} d v x d v y d v z\)

Change from velocity to speed
\[
F(v) d v=\left(\frac{m}{2 \pi k T}\right)^{\frac{3}{2}} e^{\frac{-m v^{2}}{2 k T}} 4 \pi v^{2} d v
\]

Note: velocity is a vector speed is a scalar

\section*{For different temperatures}

mean speed
\[
\begin{aligned}
\langle v\rangle & =\int_{{ }_{0}^{\infty} v \times F(v) d v} v \\
& =\left(\frac{8 k T}{\pi m}\right)^{\frac{1}{2}} \\
& \text { Mass dependence } \\
& \text { At } 300 \mathrm{~K} \\
& \mathrm{H}_{2}: 1780 \mathrm{~m} / \mathrm{s} \\
& \mathrm{He}: 1258 \mathrm{~m} / \mathrm{s} \\
& \mathrm{H}_{2} \mathrm{O}: 593 \mathrm{~m} / \mathrm{s} \\
& \mathrm{O}_{2}: 445 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~N}_{2}: 475 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Xe}: 222 \mathrm{~m} / \mathrm{s}
\end{aligned}
\]

\section*{Collisions between molecules:}

For a particular particle 1
the volume it sweeps during \(d t\) :
\(V=\pi b^{2}<V_{x}>d t\)
the number of \(\mathrm{n}_{2}\) in this volume:
\(N=\pi b^{2}<V_{x}>d t n_{2}\)
the collision number during time \(d t\)
 (collision frequency):
\(Z_{2}=\pi b^{2}{ }_{\text {max }}<V r>n_{2}\)
\(Z_{1}=\pi d^{2}<V r>n_{1}\)
\[
\begin{aligned}
& b_{\max }=r_{1}+r_{2} \\
& d=r_{1}+r_{1}=2 r_{1}
\end{aligned}
\]

Note: velocity has been changed to relative velocity

Relative velocity:
\[
\begin{aligned}
<V_{r}> & =\left(\frac{8 k T}{\pi \mu}\right)^{\frac{1}{2}} \\
\mu & =\frac{m_{1} \cdot m_{2}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
\]

\section*{Example 1:}

Calculate the collision frequency of \(\mathrm{N}_{2}(\mathrm{~d}=3.6 \AA\) ) at 1 atm ( 760 Torr)?
```

\mu=[28\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{kg mol}}{}{-1}/(6.02\times1\mp@subsup{0}{}{23}/\mp@subsup{\textrm{mol}}{}{\prime})]\times[28\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{kg mol}}{}{-1}/(6.02\times1\mp@subsup{0}{}{23}/\textrm{mol})]/
{[28\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{kg mol}}{}{-1}/(6.02\times1\mp@subsup{0}{}{23}/\mp@subsup{\textrm{mol}}{)}{\prime}]+[28\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{kg mol}}{}{-1}/(6.02\times1\mp@subsup{0}{}{23}/\textrm{mol})]}
= [(28\times1\mp@subsup{0}{}{-3}\times28\times1\mp@subsup{0}{}{-3}/(28\times1\mp@subsup{0}{}{-3}+28\times1\mp@subsup{0}{}{-3})]/6.02\times1\mp@subsup{0}{}{23}\textrm{kg}
= 2.3\times10-26 kg
Vr=(8kT/ \pi\mu)
= (8x1.38\times1\mp@subsup{0}{}{-23}\mp@subsup{\textrm{m}}{}{2}\mp@subsup{\textrm{kg s}}{}{-2}\mp@subsup{\textrm{K}}{}{-1}\times300\textrm{K}/(3.14\times2.3\times1\mp@subsup{0}{}{-26}\textrm{kg}\mp@subsup{)}{}{1/2}
= 670 m s-1
n=6.02\times1023/(22.4 L)x1000 L m
Z=\pix d}\mp@subsup{|}{}{2}\times\mp@subsup{V}{r}{}\times
= 3.14 x (3.6\times10-10m) 2 x (670 ms-1)\times2.6\times10 25 m-3
= 7.1\times10 s s

```


Average distance travel by molecules (mean free path) is:
\[
\begin{aligned}
\lambda= & \frac{\langle V\rangle t}{Z_{1} \cdot t}=\frac{\langle V\rangle}{Z_{1}} \\
& =\frac{1}{\sqrt{2} \pi d^{2} n_{1}}
\end{aligned}
\]

For: \(\mathrm{N}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~atm}\)
\[
\lambda=475 \mathrm{~ms}^{-1} \times 1.4 \times 10^{-10} \mathrm{~s}=665 \AA
\]
i> smaller than container
ii> larger than molecular dimension, molecules collide with each other, not wall.

For vacuum system, \(0.76 \times 10^{-7}\) Torr
\(\lambda=665 \mathrm{~m}\) molecules collide with wall, not with each other.
molecular flow: \(\lambda>\mathrm{D}\)
viscosity flow: \(\lambda / d<0.01\)
Transition region: \(0.01<\lambda / d<1\)


\section*{Example 2:}

Calculate the collision frequency of protein (MW=2800 Da, \(d=50 \AA\) ) with \(\mathrm{He}\left(\mathrm{d}=2.6 \AA \mathrm{~A}^{\text {) }}\right.\) at 7.6 mTorr?
```

$\mu=\left[2800 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}^{2}\right] \times\left[28 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}\right)\right] /\right.$
$\left\{\left[2800 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}^{-1}\right)\right]+\left[28 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}\right)\right]\right\}$
$=\left[\left(2800 \times 10^{-3} \times 28 \times 10^{-3} /\left(2800 \times 10^{-3}+28 \times 10^{-3}\right)\right] / 6.02 \times 10^{23} \mathrm{~kg}\right.$
$=4.6 \times 10^{-26} \mathrm{~kg}$

```
```

$\mathrm{Vr}=(8 \mathrm{kT} / \pi \mu)^{1 / 2}$

```
\(\mathrm{Vr}=(8 \mathrm{kT} / \pi \mu)^{1 / 2}\)
    \(=\left(8 \times 1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \times 300 \mathrm{~K} /\left(3.14 \times 4.6 \times 10^{-26} \mathrm{~kg}\right)^{1 / 2}\right.\)
    \(=\left(8 \times 1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \times 300 \mathrm{~K} /\left(3.14 \times 4.6 \times 10^{-26} \mathrm{~kg}\right)^{1 / 2}\right.\)
    \(=335 \mathrm{~m} \mathrm{~s}^{-1}\)
    \(=335 \mathrm{~m} \mathrm{~s}^{-1}\)
\(\mathrm{n}=6.02 \times 10^{23} /(22.4 \mathrm{~L}) \times 1000 \mathrm{~L} \mathrm{~m}^{-3} \times 7.6 \times 10^{-3} / 760=2.6 \times 10^{20} \mathrm{~m}^{-3}\)
\(\mathrm{n}=6.02 \times 10^{23} /(22.4 \mathrm{~L}) \times 1000 \mathrm{~L} \mathrm{~m}^{-3} \times 7.6 \times 10^{-3} / 760=2.6 \times 10^{20} \mathrm{~m}^{-3}\)
\(\mathrm{Z}=\pi \mathrm{xd}^{2} \times \mathrm{V}_{\mathrm{r}} \times \mathrm{n}\)
\(\mathrm{Z}=\pi \mathrm{xd}^{2} \times \mathrm{V}_{\mathrm{r}} \times \mathrm{n}\)
    \(=3.14 \times\left(50 \times 10^{-10} \mathrm{~m}\right)^{2} \times\left(335 \mathrm{~ms}^{-1}\right) \times 2.6 \times 10^{20} \mathrm{~m}^{-3}\)
    \(=3.14 \times\left(50 \times 10^{-10} \mathrm{~m}\right)^{2} \times\left(335 \mathrm{~ms}^{-1}\right) \times 2.6 \times 10^{20} \mathrm{~m}^{-3}\)
    \(=6.9 \times 10^{6} \mathrm{~s}^{-1}\)
    \(=6.9 \times 10^{6} \mathrm{~s}^{-1}\)
\(\tau=1 /\left(6.9 \times 10^{6} s^{-1}\right)=1.4 \times 10^{-7} s=0.14 \mu s\)
```

$\tau=1 /\left(6.9 \times 10^{6} s^{-1}\right)=1.4 \times 10^{-7} s=0.14 \mu s$

```

\section*{Example 3:}

If the protein is accelerated to \(1000 \mathrm{~m} / \mathrm{s}\), how low the pressure of \(\mathrm{N}_{2}\) in vacuum has to be in order to have mean free path 1 m ?
```

$\mu=\left[2800 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}^{-1}\right)\right] \times\left[28 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}\right)\right] /$
$\left\{\left[2800 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}^{-1}\right)\right]+\left[28 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1} /\left(6.02 \times 10^{23} / \mathrm{mol}\right)\right]\right\}$
$=\left[\left(2800 \times 10^{-3} \times 28 \times 10^{-3} /\left(2800 \times 10^{-3}+28 \times 10^{-3}\right)\right] / 6.02 \times 10^{23} \mathrm{~kg}\right.$
$=4.6 \times 10^{-26} \mathrm{~kg}$
$\mathrm{Vr} \approx\left(1000^{2}+475^{2}\right)^{1 / 2}$
$=1107 \mathrm{~m} \mathrm{~s}^{-1}$
$\tau=1000 \mathrm{~m} \mathrm{~s}^{-1} \mathrm{x} \tau \mathrm{s}>1 \mathrm{~m} ; \tau>10^{-3} \mathrm{~s} ; \mathrm{Z}<10^{3} \mathrm{~s}^{-1}$
$\mathrm{Z}=\pi \mathrm{xd}^{2} \times \mathrm{V}_{\mathrm{r}} \mathrm{xn}$
$=3.14 \times\left(50 \times 10^{-10} \mathrm{~m}\right)^{2} \times\left(1107 \mathrm{~ms}^{-1}\right) \times \mathrm{n} \mathrm{m}^{-3}$
$=8.6 \times 10^{-14} \times \mathrm{n} \mathrm{s}^{-1}<10^{3} \mathrm{~s}^{-1}$
$\mathrm{n}<1 / 8.6 \times 10^{17} \mathrm{~m}^{-3}=1.1 \times 10^{16} \mathrm{~m}^{-3}=3.2 \times 10^{-7}$ Torr

```
- Pumping speed
- Throughput
- Conductance
- Constant volume per sweep per unit time
- As the pressure decreases, less molecules can be sweep (absorbed) per sweep (per unit time) than previous sweep

Pumping speed: Sweep volume per unit time
\(S \equiv d V / d t\)
- A property of a pump
- Depending on mechanical design

Throughput: number of molecules pumped per unit time
\(\mathrm{Q}(\mathrm{t}) \equiv \mathrm{P}(\mathrm{t}) \times \frac{\Delta V}{\Delta t}=\mathrm{P}(\mathrm{t}) \mathrm{S} \quad(\mathrm{Q}\) changes with time if P changes with time)
\(\Rightarrow S=Q / P\)

Pumping speed:
\(\mathrm{S} \equiv \mathrm{dV} / \mathrm{dt}\)

\section*{Pump down time:}

Number of molecules pumped out per unit time

\section*{Example:}

Pump down time:
\(\mathrm{V}=1 \mathrm{~m}^{3}, \mathrm{~S}=10 \mathrm{~m}^{3} / \mathrm{h}\)
\(P_{0}=101323.2 \mathrm{~Pa}=760\) Torr

From : \(P V=n R T\), we have
\[
\begin{gathered}
\frac{d n}{d t} \approx \frac{d(P V)}{d t}=-S P \\
\frac{d P}{d t}=-\frac{S}{V} P \\
P=P_{0} e^{-t / \tau} \\
\tau=\frac{V}{S} \\
t=\frac{V}{S} \ln \left(\frac{P_{0}}{P}\right)
\end{gathered}
\]


\section*{Conductance:}

A property of vacuum components tube, aperture,...)


Continuum flow (viscosity flow region)
Long round tube
\(C=180 \frac{d^{4}}{L} P_{\text {ave }} \quad\) liter \(/ \mathrm{sec}\)
Pressure dependent
( d and L in \(\mathrm{cm}, \mathrm{P}\) in Torr)

Molecular flow
Long round tube

For air at 22 C
\(C=12 \frac{d^{3}}{L} \quad\) liter \(/ \mathrm{sec}\)
Pressure independent
( d and L in \(\mathrm{cm}, \mathrm{P}\) in Torr)

Pumping speed:
\(\mathrm{S} \equiv \mathrm{Q}_{1} / \mathrm{P}_{1}\)
\(\mathrm{S}_{\mathrm{p}} \equiv \mathrm{Q}_{2} / \mathrm{P}_{2}\)
Conductance:
\(\mathrm{C} \equiv \mathrm{Q} /\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)\)
Because
\[
\mathrm{Q}_{1}=\mathrm{Q}_{2}\left(\text { If } \mathrm{T}_{1}=\mathrm{T}_{2}\right)
\]

Feom (1)-(4), we have:
\(1 / S=1 / S_{p}+1 / C\)


Example I : for a long round tube, \(L=1 \mathrm{~m}, \mathrm{~d}=0.05 \mathrm{~m}\), in continuum flow (viscosity flow) region
\(C=180 \frac{d^{4}}{L} P_{\text {ave }} \quad \mathrm{d}\) and L in \(\mathrm{cm}, \mathrm{P}\) in Torr
\(=180 \frac{5^{4}}{100} 10^{-1}\) liter \(/ \mathrm{sec}\)
\(=112\) liter \(/ \mathrm{sec}\)
\(=405 \mathrm{~m}^{3} / \mathrm{h}\)
For a pump of pumping speed \(\mathrm{S}_{\mathrm{p}}=10 \mathrm{~m}^{3} / \mathrm{h}\) connected to a chamber through the tube, the real pumping speed for chamger is
\(1 / \mathrm{S}=1 / \mathrm{S}_{\mathrm{p}}+1 / \mathrm{C}=1 / 10+1 / 405, \quad \mathrm{~S}=9.8 \mathrm{~m}^{3} / \mathrm{h}\)

Chamber
路

Example II: for a long round tube, \(L=1 \mathrm{~m}, \mathrm{~d}=0.01 \mathrm{~m}\), in continuum flow (viscosity flow) region

\[
\begin{aligned}
C & =180 \frac{d^{4}}{L} P_{\text {ave }} \quad \mathrm{d} \text { and } L \text { in } \mathrm{cm}, P \text { in Torr } \\
& =180 \frac{1^{4}}{100} 10^{-1} \text { liter } / \mathrm{sec} \\
& =0.18 \text { liter } / \mathrm{sec} \\
& =0.65 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
\]

For a pump of pumping speed \(S_{p}=10 \mathrm{~m}^{3} / \mathrm{h}\) connected to a chamber through the tube, the real pumping speed is:
\(1 / S=1 / S_{p}+1 / C=1 / 10+1 / 0.65, \quad S=0.63 \mathrm{~m}^{3} / \mathrm{h}\) (Waste of money)

For \(L=1 \mathrm{~m}, \mathrm{~d}=0.05 \mathrm{~m}, \mathrm{~S}_{\mathrm{p}}=10\left(\mathrm{~m}^{3} / \mathrm{h}\right)\)
\(1 / S=1 / 10+1 / 405, S=9.8\)

For \(l=1 \mathrm{~m}, \mathrm{~d}=0.01 \mathrm{~m}, \mathrm{~S}_{\mathrm{p}}=10\left(\mathrm{~m}^{3} / \mathrm{h}\right)\)
\(1 / S=1 / 10+1 / 0.65, S=0.63\)


Mechanical pumps should connected to mass spectrometer using tube with diameter \(>4 \mathrm{~cm}\), not longer than 2 m .

Example III: for a long round tube, \(L=1 \mathrm{~m}, \mathrm{~d}=0.08 \mathrm{~m}\), in molecular flow region,
\(C=12 \frac{d^{3}}{L} \quad \mathrm{~d}\) and L in cm ,
\(=12 \frac{8^{3}}{100}\) liter \(/ \mathrm{sec}\)
\(=61.4\) liter \(/ \mathrm{sec}\)
For a pump with pumping speed of \(S_{p}=300 \mathrm{liter} / \mathrm{sec}\), connected to a chamber through the tube, the real pumping
 speed is:
\(1 / S=1 / S_{p}+1 / C=1 / 300+1 / 61.4, \quad S=50\) liter \(/\) sec (waste of money)

Example IV: for a long round tube, \(L=0.05 \mathrm{~m}, \mathrm{~d}=0.08 \mathrm{~m}\), in molecular flow region,
\[
\begin{aligned}
C & =12 \frac{d^{3}}{L} \quad \text { d and } L \text { in } \mathrm{cm} \\
& =12 \frac{8^{3}}{10} \text { liter } / \mathrm{sec} \\
& =1228 \text { liter } / \mathrm{sec}
\end{aligned}
\]

For a pump with pumping speed of \(\mathrm{S}_{\mathrm{p}}=300 \mathrm{liter} / \mathrm{sec}\), connected to a chamber through the tube, the real pumping speed is:

\(1 / S=1 / S_{p}+1 / C=1 / 300+1 / 1228, \quad S=241\) liter \(/ \mathrm{sec}\)
(tube should be as short as possible, as large as possible, e.g., connected directly to chamber)
- High vacuum pumps
- Low (and medium) vacuum pumps

Degree of Vacuum
Low
Medium
High
Very high
Ultrahigh
Extreme ultrahigh

Pressure range
\[
10^{5}-3.3 \times 10^{3} \mathrm{~Pa} \quad 760-25 \text { Torr }
\]
\(3.3 \times 10^{3}-10^{-1} \mathrm{~Pa}\)
\(10^{-1}-10^{-4} \mathrm{~Pa}\)
\(10^{-4}-10^{-7} \mathrm{~Pa}\)
\(10^{-7}-10^{-10} \mathrm{~Pa}\)
\(<10^{-10} \mathrm{~Pa}\)
\(25-7.6 \times 10^{-4}\) Torr
\(7.6 \times 10^{-4}-7.6 \times 10^{-7}\) Torr
\(7.6 \times 10^{-7}-7.6 \times 10^{-10}\) Torr
\(7.6 \times 10^{-10}-7.6 \times 10^{-13}\) Torr
\(<7.6 \times 10^{-13}\) Torr



\section*{oil sealed low vacuum pump}

\section*{Low vacuum pump}

> Rotary vane pump Working principle

exhaust valve suction port


\title{
Rotary vane pump \\ One-stage vs. Two-stage
}

\(\rightarrow\) Reduce the ultimate pressure
\begin{tabular}{|c|c|c|}
\hline & One stage & Two stage \\
\hline \begin{tabular}{c} 
Ultimate \\
pressure \\
(torr)
\end{tabular} & \(10^{-3}\) & \(10^{-4}\) \\
\hline Price & Cheap & Expensive \\
\hline
\end{tabular}

\section*{Oil in rotary pump}
\begin{tabular}{l|l|}
\hline Oil functions: & Low vapor pressure \\
-Lubricant & Appropriate viscosity \\
Stability
\end{tabular}
-Seal
-Cooler

- Pumping speed: \(1-500 \mathrm{~L} \cdot \mathrm{~s}^{-1}\)
- \(\mathrm{P}_{\text {min }}\) (Ultimate pressure): \(10^{-3}-10^{-4}\) Torr
- Typical pressure new pump: \(5 \times 10^{-3}\) Torr old pump: \(2 \times 10^{-2}\) Torr bad pump: \(1 \times 10^{-1}\) Torr

Oil sealed low vacuum pump operation notes:

\section*{1.Oil level}
2. Change oil when it is dirty
3. Change oil when it is hot
4. Pump oxygen?
5. Pump halogen?
6. Pump water vapor?


\section*{Oil sealed low vacuum pump operation} notes:


\author{
To Outdoor
}


\section*{oil free low vacuum pump}

Low vacuum pump

\section*{Scroll Pump \\ Working principle}



67

\section*{Scroll pump operation notes:}
- Change scroll on time


Oil free low vacuum pump


High vacuum pump

High vacuum pump: Turbo molecular pump



\section*{High vacuum pump: Turbo} molecular pump

- Pumping speed is proportional to the inlet area A and the mean circumferential velocity of the blades v, i. e. rotational speed.
- Pumping range: \(10^{-4}\) to \(10^{-11}\) Torr
- Oil free, Low vibration \& noise

\section*{Pumping speed}
- Different gases pump down at different rates
- Compression ratio varies exponentially with molecular weight of gases


\section*{Turbo molecular pump operation notes}
1. A roughing pump is used to get the pressure down to \({ }^{\sim} 10^{-3}\) Torr
2. Magnetic turbo (how many axis?)/non-magnetic turbo pump
3. Orientation (bearing/oil)
4. Particle drop in
5. Pressure raise
6. Electric power shutdown
7. Vibration (earthquake)


Ball bearing

\(\begin{array}{cc}\text { Turbo-V 701 } & \text { Turbo-V } 1001 \\ \text { Navigator } & \text { Navigator }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Turbo-V } \\
81 \mathrm{M}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Turbo-V } \\
& 81 \mathrm{~T}
\end{aligned}
\] & Turbo-V 301 Navigator & \multicolumn{2}{|l|}{\begin{tabular}{l}
Turbo-V 551 \\
Navigator
\end{tabular}} & \begin{tabular}{l}
Turbo-V 701 \\
Navigator
\end{tabular} & \begin{tabular}{l}
Turbo-V 1001 \\
Navigator
\end{tabular} \\
\hline Pump Model & \begin{tabular}{l}
Turbo-V \\
81 M
\end{tabular} & Turbo-V
\[
81 \mathrm{~T}
\] & \begin{tabular}{l}
Turbo-V 301 \\
Navigator
\end{tabular} & \begin{tabular}{l}
Turbo-V 551 \\
Navigator
\end{tabular} & \begin{tabular}{l}
Turbo-V 701 \\
Navigator
\end{tabular} & \begin{tabular}{l}
Turbo-V 1001 \\
Navigator
\end{tabular} \\
\hline Pump Specification & DN 40 & DN 63 & DN 100 & DN 160 & DN 200 & DN 250 \\
\hline \multicolumn{7}{|l|}{Pumping Speed, l/s} \\
\hline Nitrogen & 50 & 77 & 250 & 550 & 690 & 1050 \\
\hline Helium & 56 & 65 & 220 & 600 & 620 & 900 \\
\hline Hydrogen & 46 & 50 & 200 & 510 & 510 & 920 \\
\hline \multicolumn{7}{|l|}{Compression Ratio} \\
\hline Nitrogen & \(5 \times 10^{8}\) & \(7 \times 10^{8}\) & \(7 \times 10^{8}\) & \(>1 \times 10^{9}\) & \(1 \times 10^{9}\) & \(1 \times 10^{9}\) \\
\hline Helium & \(8 \times 10^{4}\) & \(3 \times 10^{3}\) & \(1 \times 10^{5}\) & \(1 \times 10^{7}\) & \(1 \times 10^{7}\) & \(1 \times 10^{7}\) \\
\hline Hydrogen & \(7 \times 10^{3}\) & \(3 \times 10^{2}\) & \(1 \times 10^{4}\) & \(1 \times 10^{6}\) & \(1 \times 10^{6}\) & \(1 \times 10^{6}\) \\
\hline \multicolumn{7}{|l|}{Base pressure, mbar} \\
\hline with recommended mechanical pump & \(5 \times 10^{-10}\) & \(5 \times 10^{-9}\) & \(<5 \times 10^{-10}\) & \(<1 \times 10^{-10}\) & \(<1 \times 10^{-10}\) & \(<1 \times 10^{-10}\) \\
\hline with recommended dry pump & \(5 \times 10^{-9}\) & \(5 \times 10^{-8}\) & \(<5 \times 10^{-9}\) & \(<1 \times 10^{-10}\) & \(<1 \times 10^{-10}\) & \(<1 \times 10^{-10}\) \\
\hline Startup Time, min & \(<1\) & \(<1\) & 2.5 & \(<5\) & \(<5\) & \(<4\) \\
\hline Rotational Speed, rpm & 80,000 & 80,000 & 56,000 & 42,000 & 42,000 & 38,000 \\
\hline
\end{tabular}

\section*{Turbo molecular pump used in LTO}


High vacuum
medium vacuum

Differential pumping

\section*{Molecular flow aperture}

For air at 22 C
\(C(L / s)=3.7(T / M))^{1 / 2}=11.6 \mathrm{~A}\left(\mathrm{~cm}^{2}\right)\) (for air)
T : temperature in \(\mathrm{K}, \mathrm{M}\) : molecular weight

\section*{Continuum flow}
aperture
\(Q\left(\mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{s}\right)=200 \mathrm{PAC}^{\prime}\)
\(P\) in \(\mathrm{Pa}, \mathrm{A}\) in \(\mathrm{m}^{2}, \mathrm{C}^{\prime}=0.85\)

\section*{Ambient ionization mass spectrometer}

\(\mathrm{Q}\left(\mathrm{Pa}-\mathrm{m}^{3} / \mathrm{s}\right)=200 \mathrm{PAC}^{\prime}=200 \times 1 \times 10^{5} \mathrm{~Pa} \times 3.14 \times 0.25 \times 10^{-6} \mathrm{~m}^{2} \times 0.85=\) 13
\(\mathrm{Q}=\mathrm{PxS} ; 13=1.3 \times 10^{-4} \mathrm{x} \mathrm{S}\)
\(\mathrm{S}=10^{5} \mathrm{~m}^{3} / \mathrm{s}=10^{8} \mathrm{I} / \mathrm{s}\)

\section*{Differential pumping}
\[
Q_{3}=1.3 \times 10^{-5} \times 300 \mathrm{~L} / \mathrm{s}=1.3 \times 10^{-5} \times 0.3 \mathrm{~m}^{3} / \mathrm{s}=3.9 \times 10^{-6} \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{s}
\]

\[
\begin{aligned}
& \text { For air at } 22 \mathrm{C} \quad \mathrm{~A}=3.14 \times 0.05 \times 0.05=7.8 \times 10^{-3} \mathrm{~cm}^{2} \\
& \mathrm{C}(\mathrm{~L} / \mathrm{s})=11.6 \mathrm{~A}\left(\mathrm{~cm}^{2}\right)=0.09 \mathrm{~L} / \mathrm{s}=9 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{Q}_{3}=3.9 \times 10^{-6} \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{s}=9 \times 10^{-5}\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right)=9 \times 10^{-5} \mathrm{P}_{2} \\
& \mathrm{P}_{2}=4.2 \times 10^{-2} \mathrm{~Pa}=3 \times 10^{-4} \text { Torr }
\end{aligned}
\]


To keep \(\mathrm{P}_{2}=4.2 \times 10^{-2} \mathrm{~Pa}=3 \times 10^{-4}\) Torr
Maximum of \(\mathrm{Q}_{2}\) :
\(\mathrm{Q}_{2}=4.2 \times 10^{-2} \mathrm{~Pa} \times 0.3 \mathrm{~m}^{3} / \mathrm{s}=1.2 \times 10^{-2} \mathrm{~Pa} \mathrm{~m}{ }^{3} / \mathrm{s}\)

\[
\begin{aligned}
& \mathrm{Q}_{2}=0.012=200 \mathrm{P}_{1} \mathrm{AC}^{\prime} \mathrm{Pa}-\mathrm{m}^{3} / \mathrm{s}=1.3 \times 10^{-4} \mathrm{P}_{1} \quad \mathrm{~A}=7.8 \times 10^{-7} \mathrm{~m}^{2} \\
& \mathrm{P}_{1}=92 \mathrm{~Pa}=0.7 \text { Torr }
\end{aligned}
\]


If \(P_{0}=1 \mathrm{~atm}\), to keep \(P_{1}=0.7\) Torr, what is the pumping speed of S 1 ?
\[
\begin{aligned}
& \mathrm{Q}_{1}=200 \mathrm{P}_{0} \mathrm{AC}^{\prime} \mathrm{Pa}-\mathrm{m}^{3} / \mathrm{s}=13 \mathrm{~Pa} \mathrm{~m} \\
& 3 \\
& \mathrm{~S} 1=0.14 \mathrm{~m} 3 / \mathrm{s}=500 \mathrm{~S}_{1} \\
& \mathrm{~m} / \mathrm{h}
\end{aligned}
\]


\section*{Differential pumping}


\section*{Pressure detector (gauge)}
- Low vacuum: direct, indirect
- High vacuum: indirect

\section*{Thermal Conductivity Gauges}
- Thermal conductivity gauges are a class of pressure-measuring instruments that operates by measuring in some way the rate of heat transfer between a heated wire and its surroundings.
- The heat transfer between a heated wire and a nearby wall is pressure dependent

\section*{Types of thermal conductivity gauges}
- Pirani guage:

The change in temperature can be detected by monitoring the resistance of the heated wire, then a Wheatstone bridge circuit is used to measure the resistance change.
- Thermocouple gauge

The change in temperature can be measured directly with a thermocouple.


\section*{The heat flow under different pressure}


\section*{Operation notes:}
- Orientation
- Gas species


Capacitance manometer: gas species independent


\section*{capacitance}
\[
\mathrm{C}=\varepsilon_{\mathrm{r}} \frac{\mathrm{~A}}{4 \pi \mathrm{~d}}=\frac{\mathrm{Q}}{\mathrm{~V}}
\]

Operation notes:
- Orientation
- Calibration

High vacuum gauge


\section*{Hot cathode gauge}


Using the vacuum chamber makes nude gauge become a complete seal.

\section*{\(*\) Gas correction factor}
\[
\mathrm{P}=\left[\mathrm{I}_{\mathrm{c}} /(\mathrm{Sg} \cdot \mathrm{Ie})\right] \text { where } \mathrm{Sg}_{\mathrm{g}}=\mathrm{S}_{\mathrm{N}_{2}} \cdot \mathrm{Rg}_{\mathrm{g}}
\]

Ic is ionization current collected by ion collector. (amps)
Ie is electron emission current. (amps)
Sg is sensitivity factor for gas " g ". ( torr \(^{-1}\) )
\(\mathrm{S}_{\mathrm{N} 2}\) is sensitivity factor for nitrogen, standard gas used by industry. (to
Rg is gas correction or relative sensitivity factor.
\begin{tabular}{|c|c|}
\hline Gas & Rg \\
\hline He & 0.18 \\
\hline Ne & 0.30 \\
\hline \(\mathrm{D}_{2}\) & 0.35 \\
\hline \(\mathrm{H}_{2}\) & 0.46 \\
\hline \(\mathrm{~N}_{2}\) & 1.00 \\
\hline Air & 1.00 \\
\hline \(\mathrm{O}_{2}\) & 1.01 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Gas & Rg & & Gas & Rg \\
\hline & CO & 1.05 & & Kr \\
\hline & & 1.94 \\
\hline \(\mathrm{H}_{2} \mathrm{O}\) & 1.12 & & \(\mathrm{SF}_{6}\) & 2.20 \\
\hline NO & 1.15 & & \(\mathrm{C}_{2} \mathrm{H}_{6}\) & 2.60 \\
\hline \(\mathrm{NH}_{3}\) & 1.23 & Xe & 2.87 \\
\hline Ar & 1.29 & Hg & 3.64 \\
\hline \(\mathrm{CH}_{4}\) & 1.40 & & \(\mathrm{C} 3 \mathrm{H}_{8}\) & 4.20 \\
\hline \(\mathrm{CO}_{2}\) & 1.42 & & \\
\hline
\end{tabular}

\section*{Cold cathode gauge}

\section*{* Working principle}

Cold cathode gauge utilize crossed electric and magnetic fields to trap electrons.

\begin{tabular}{|c|c|}
\hline Electric field & \(2000-6000 \mathrm{~V}\) \\
\hline Magnetic field & \(1000-2000 \mathrm{G}\) \\
\hline Range & \(10^{-2}-10^{-9}\) torr \\
\hline
\end{tabular}

Without fragile filament, cold cathode gauges are robust and economical, suffering only from the limited range of applicability.

\section*{Operation notes:}
- Pressure
- Gas species

\section*{Full range pressure gauge}

\section*{Combination of convention and ionization gauge}
```

