Mass spectrometry: principles and applications

Chi-Kung Ni (倪其焜) Institute of Atomic and Molecular Sciences, Academia Sinica (中央研究院 原子與分子科學研究所)

徵博士後、博士班、碩士班、研究助理

歡迎有理工、生化背景,對研究有興趣者應徵

研究主題:

(1)建造質譜儀(具機械、電子電路、真空技術背景者尤佳)(2)生物樣品萃取醣分子、質譜鑑定結構(具化學、生化背景者尤佳)

工作地點:中央研究院原子與分子科學研究所 (位於台北市臺灣大學校總區內)

Selected topics from textbook and my handout

Mass Spectrometry: Principles and Applications Edmond de Hoffmann & Vincent Stroobant John Wiley & amp; Sons, 2007年10月29日 512 頁

Overview of mass spectrometers

- 11/24 Maas spectra, vacuum technology
- 12/1 Ionization method
- 12/8 Mass analyzer, ion detection
- 12/15 Applications

Evaluation: quiz, 20 min/close book in 12/1, 12/8, 12/15.

Mass spectrum

Mass spectra only provide information of m/z

- How to obtain molecular weight?
- How to obtain charge value?

1 IA 1A						Perio	odic T	able	of the	e Eler	nents	5					18 VIIIA 8A
1 +1 Hydrogen 1.008	2 IIA 2A							Atomic	Valence Charge			13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	2 He Helium 4.003
3 +1 Li Lithium 6.941	4 Be Berytlium 9.012							Sy	mbol Iame			5 B Boron 10.811	6 Carbon 12.011	7 *5.3 N Nitrogen 14.007	8 -2 Oxygen 15.999	9 -1 F Fluorine 18.998	10 ° Neon 20.180
11 *1 Na ^{Sodium} 22.990	12 +2 Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	9 		11 IB 1B	12 IIB 2B	13 *3 Aluminum 26.982	14 *4 Silicon 28.086	15 +5.+3.3 P Phosphorus 30.974	16 +62 Sulfur 32.066	17 ⁻¹ Chlorine 35.453	18 ° Argon 39.948
19 *1 K Potassium 39.098	20 *2 Calcium 40.078	21 *3 Sc Scandium 44.956	22 *4 Ti Titanium 47.88	23 V Vanadium 50.942	24 +6,+3,+2 Cr Chromium 51.996	25 +7.+4.+2 Mn Manganese 54.938	26 Fe Iron 55.933	27 +3,- Co Cobalt 58.933	² 28 ⁴³ Nickel 58.093	29 +2.+ Cu Copper 63.546	30 Zn Zinc 65.39	*2 31 *3 Gallium 09.732	32 *4 Germanium 72.61	33 +5,+3 Ass Arsenic 74.922	34 +4.2 Selenium 78.972	35 +5,-1 Br Bromine 79.904	36 ° Kr Krypton 84.80
37 *1 Rb Rubidium 84.468	38 +2 Sr Strontium 87.62	39 ¥ Yttrium 88.906	40 *4 Zr Zirconium 91.224	41 *5 Niobium 92,906	42 +6,+4 Mo Molybdenum 95,95	43 TC Technetium 98.907	44 +4,+3 Ru Ruthenium 101.07	45 Rh Rhodium 102.906	³ 46 ^{+4,+2} Pd Palladium 106.42	47 * Ag silver 107.868	48 Cadmium 112.411	*2 49 *3 In Indium 114.818	50 +2.4 Sn Tin 118.71	51 +3 Sb Antimony 121.760	52 +4 Tellurium 127.6	53 +51 Iodine 126.904	54 ° Xenon 131.29
55 *1 Cs Cesium 132.905	56 *2 Ba Barium 137.327	57-71	72 *4 Hafnium 178.49	73 *5 Ta Tantalum 180.948	74 *6,+4 W Tungsten 183.85	75 +5.+4.+3 Re Rhenium 186.207	76 +4 Osmium 190.23	77 +4.4 Ir Iridium 192.22	³ 78 +4,+2 Platinum 195.08	79 ** Au Gold 196.967	3 80 +2. Hg Mercury 200.59	*1 81 *3.+1 TI Thallium 204.383	82 *2 Pb Lead 207.2	83 +3 Bi Bismuth 208,980	84 +4 Polonium [208.982]	85 -1 At Astatine 209.987	86 ° Rn Radon 222.018
87 *1 Francium 223.020	88 *2 Radium 226.025	89-103	104 *4 Rf Rutherfordium	105 unk Db Dubnium [262]	106 unk Sg Seaborgium [200]	107 unk Bh Bohrium [264]	108 unk Hs Hassium [209]	109 W Mt Meitnerium [268]	110 uni Ds Darmstadtiun [209]	111 uni Rg Roentgenium [272]	112 Copernicium	nk 113 und Uut Ununtrium unknown	Flerovium	115 unk Uunpentium unknown	Livermorium	117 unk Ununseptium unknown	118 unk Uuuo Ununoctium unknown
	Lantha Seri	anide es Lant	* ³ 58 Aanum Ce	* ³ 59 Fium Prased	er Neody	mium ⁺³ 61 Prom	*3 62 m S Sam	* ³ 63 narium Eu	Eu ^{*3} 64 Gad	*3 65 ad	rbium +3 66	⁺³ by sprosium	*3 68 mium Eri	Er ^{*3} 69 T Dium Thu	n ^{*3} Y Mium Ytte	*3 71 L	*3 .U
	Actin Seri	ide es Acti	*3 90 140 *3 7 140 7 140 7 140 7 7 7 7 7 7 7 7 7 7 7 7 7	14 h rium 2.038 14 91 Prota 23	*5 92 a ctinium .036 238	+6 93 Nept 1029 14/2 14/2 93 Nept 233	+7 94 +7 94 Plut 248 24	+7,+4 95 Pu 4 onium 4,064 An	+3 96 Ct Ct 243,061	*3 97 Frium 17,070 2	*3 98 *3 98 kelium 47,070	162.50 16 16 16 16 16 16 16 16 16 16	4.930 10 *3 100 ES Fen 254) 25	*3 101 mium 7.095 22	1934 17 *3 102 Helevium 58.1 25	*2 103 10 elium 9.101	+3 +3 encium

© 2013 Todd Helmenstine chemistry.about.com sciencenotes.org

z	Name	Symbol	Mass of Atom (u)	% Abundance	z	Name	Symbol	Mass of Atom	% Abundance
					15	Phosphorus	³¹ P	30.973762	100
1	Hydrogen	¹ H	1.007825	99.9885					
	Deuterium	² H	2.014102	0.0115	16	Sulphur	³² S	31,972071	94.93
	Tritium	³ Н	3.016049	*			³³ S	32.971458	0.76
							³⁴ S	33.967867	4.29
2	Helium	³ He	3.016029	0.000137			³⁶ S	35.967081	0.02
_		⁴ He	4 002603	99 999863			-		
					17	Chlorine	³⁵ CI	34,968853	75,78
3	Lithium	⁶ Li	6.015122	7.59			³⁷ Cl	36,965903	24.22
-		7Li	7.016004	92.41					
					18	Argon	³⁶ Ar	35,967546	0.3365
4	Beryllium	⁹ Be	9 012182	100	10	gon	³⁸ Δr	37 962732	0.0632
-	Derymann	DC	0.012102	100			⁴⁰ Ar	39 962383	99 6003
5	Boron	¹⁰ B	10 012937	19.9			74	00.002000	00.0000
0	Borom	¹¹ B	11 009305	80.1	10	Potassium	³⁹ K	38 963707	03 2581
		D	11.003303	00.1	15	1 0(233)0111	40 K	39 963999	0.0117
6	Carbon	¹² C	12 000000	98 93			⁴¹ K	40 961826	6 7302
Ŭ	Guibon	¹³ C	13 003355	1.07			i i i i i i i i i i i i i i i i i i i	40.001020	0.7002
		¹⁴ C	14.003242	*	20	Calcium	⁴⁰ Ca	30 962591	96 941
		0	14.000242		20	Galolum	42Ca	41 958618	0.647
7	Nitrogen	¹⁴ N	14 003074	99 632			43Ca	42 958767	0.135
'	Millogen	¹⁵ N	15 000109	0.368			44Ca	43 955481	2 086
			10.000100	0.000	1		46Ca	45 953693	0.004
8	Oxygen	¹⁶ O	15 994915	99 757			48Ca	47 952534	0.004
0	Cxygen	¹⁷ O	16 999132	0.038			Οu	47.002004	0.107
		180	17 999160	0.000	21	Scandium	45Sc	44 955910	100
		Ŭ	17.555166	0.200		Coundian	00	44.000010	100
9	Fluorine	¹⁹ F	18 998403	100	22	Titanium	⁴⁶ Ti	45 952629	8 25
Ŭ	1 donno		10.000100	100		- name	⁴⁷ Ti	46 951764	7 44
10	Neon	²⁰ Ne	19 992440	90.48			48Ti	47 947947	73 72
		²¹ Ne	20 993847	0.27			⁴⁹ Ti	48 947871	5.41
		²² Ne	21,991386	9.25			⁵⁰ Ti	49 944792	5.18
				0.20					0.10
11	Sodium	²³ Na	22 989770	100	23	Vanadium	⁵⁰ V	49 947163	0 250
	Couldin		22.000770		20	, and a land	⁵¹ V	50.943964	99,750
12	Magnesium	²⁴ Ma	23 985042	78 99				001010001	
	magneelan	²⁵ Ma	24 985837	10.00	24	Chromium	⁵⁰ Cr	49 946050	4 345
		²⁶ Ma	25 982593	11.01		e in e in e in e	⁵² Cr	51 940512	83 789
			20.002000				⁵³ Cr	52.940654	9.501
13	Aluminum	²⁷ AI	26,981538	100			⁵⁴ Cr	53,938885	2.365
			20.001000				0.	00.000000	2.000
14	Silicon	²⁸ Si	27.976927	92,2297	25	Manganese	⁵⁵ Mn	54,938050	100
		²⁹ Si	28,976495	4,6832	20	ganooo		0	
		³⁰ Si	29.973770	3,0872	26	Iron	⁵⁴ Fe	53,939615	5,845
		0.			20		⁵⁶ Fe	55 934942	91,754
							10	00.004042	01.704

Mass number 質量數

The mass number, also called the nucleon number, is the number of protons and neutrons in an atomic nucleus.

The mass number is unique for each isotope of an element and is written either after the element name or as a superscript to the left of an element's symbol.

For example, carbon-12 (¹²C) has 6 protons and 6 neutrons.

Molecular mass

The molecular mass (abbreviated Mr) of a substance, formerly also called **molecular weight** and abbreviated as **MW**, is the mass of one molecule of that substance, relative to the unified atomic mass unit u (equal to 1/12 the mass of one atom of 12C).

The <u>dalton</u> or <u>unified atomic mass unit</u> (symbols: **Da** or **u**) is a non-SI unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest

Nominal mass

The nominal mass for an element: the <u>mass number</u> of its <u>most</u> <u>abundant</u> naturally <u>occurring stable isotope</u>.

The nominal mass for a molecule: sum of the nominal masses of the constituent atoms.

Carbon: has two stable isotopes 12C at 98.9% natural abundance and 13C at 1.1% natural abundance, thus the nominal mass of carbon is 12 Da.

The nominal mass is not always the lowest mass number, for example iron has isotopes 54Fe, 56Fe, 57Fe, and 58Fe with abundances 6%, 92%, 2%, and 0.3%, respectively, and a nominal mass of 56 Da.

Water H2O nominal mass: is 18 Da.

Average mass

The average mass of a molecule is obtained by summing the average atomic masses of the constituent elements.

For example, the average mass of natural water with formula H_2O is 1.00794 + 1.00794 + 15.9994 = 18.01528 Da.

Exact mass

The exact mass of an isotopic species is obtained by summing the masses of the individual isotopes of the molecule.

For example, the exact mass of water containing two hydrogen-1 (1 H) and one oxygen-16 (16 O) is 1.0078 + 1.0078 + 15.9949 = 18.0105 Da.

The exact mass of heavy water, containing two hydrogen-2 (deuterium or ²H) and one oxygen-16 (¹⁶O) is 2.0141 + 2.0141 + 15.9949 = 20.0229 Da.

1 mole =12.0107g

Monoisotopic mass

The monoisotopic mass is the sum of the masses of the atoms in a molecule using the most abundant isotope for each element.

For <u>typical organic compounds</u>, where the monoisotopic mass is most commonly used, this also results in the <u>lightest isotope</u> being selected.

For some heavier atoms such as iron and argon the principal isotope is not the lightest isotope.

Most abundant mass

The mass of the molecule with the most highly represented isotope distribution, based on the natural abundance of the isotopes.

HCI

M.	W.	Abund	lance

- ¹H³⁵Cl (0.9999)x(0.7578) = 0.7577
- ²H³⁵Cl (0.0001)x(0.7578) = 0.00007
- ¹H³⁷Cl (0.9999)x(0.2422) = 0.2421
- ²H³⁷Cl (0.0001)x(0.2422) = 0.00002

Mass spectrum

M. W.	Abundance
120	$(0.9893)^{60} = 0.5244$
121	$[(0.9893)^{59}x (0.01)^{1]}xC_1^{60} = 0.32$
122	$[(0.9893)^{58} x (0.01)^2] x C_2^{60} = 0.09$
123	$[(0.9893)^{57}x (0.01)^3]xC_3^{60} = 0.02$

C₆₀

¹³C+¹⁶O+¹⁸O =13.00+15.995+17.99=46.99

=12.00+15.995+17.99=45.98

 $^{12}C+^{16}O+^{18}O$

 $^{12}C + ^{16}O + ^{16}O$

 CO_2

¹³C+¹⁶O+¹⁶O =13.00+15.995x2=44.99

=12.00+15.995x2=43.99

 $[(0.01) \times (0.9975) \times (0.002)] \times C_1^2 = 0.00004$

 $[(0.9893)x(0.9975)x(0.002)]xC_1^2 = 0.004$

[(0.01)x(0.9975)x(0.9975)] = 0.01

[(0.9893)x(0.9975)x(0.9975)] = 0.98

Mass

全部顯示

🗃 🕗 🕻 🔺 🏊 🏚 🌵

	Mass Spec Tools
Calculate Isotopes Chemical Formula: C1000 Calculation Method: Low Resolution Minimum abundance: 0.1% ~ Note: assumes neutral charge. Calculate / Plot Calculate / Plot Plot Configuration Show Plot Title: Subtitle: Low Mass: High Mass: Plot Size: Small ~ Show Mass Labels	 ✓ Data table (mass intensity) 12001 0.2 12002 1 12003 3.6 12004 9.8 12005 21.2 12006 38 12007 58.3 12009 93.3 12010 100 12011 97.3 12012 86.8 12013 71.3 12014 54.4 12015 38.7 12016 25.7 12017 16.1 12018 9.5 12019 5.3 12020 2.8
Plot 100 100 120192011 12009 12012 12008 12012 12014 1201 12017 12014 1201 12012 12007 12012 12007 12011 Mass M/e	13 12014 12015 12016 12017 12018 12019 1202 1202 12015 12019 1202

 $1u = 1Da = 1.660540x10^{-27} \text{ kg}$

1e = 1.6x10⁻¹⁹ C

1Th (Thomson) = 1 u/e =1.036426x10⁻⁸ kg/C

Mass spectra only provide information of m/z

- How to obtain molecular weight?
- How to obtain charge value?

Mass spectrum

For most organic molecules

I. Vacuum technology

- Collision frequency
- Mean free path
- Molecular flow vs viscosity flow

From gas kinetics

Velocity in three dimension

$$G(v)dv = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{\frac{-mv^2}{2kT}} dvxdvydvz$$

Change from velocity to speed

$$F(v)dv = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{\frac{-mv^2}{2kT}} 4\pi v^2 dv$$

Note: velocity is a vector speed is a scalar

For different temperatures

mean speed

$$\langle v \rangle = \int_{0}^{\infty} v \times F(v) dv$$

= $\left(\frac{8kT}{\pi m}\right)^{\frac{1}{2}}$ Mass dependence
At 300 K,
H₂: 1780 m/s
He: 1258 m/s

H₂: 1780 m/s He: 1258 m/s H₂O: 593 m/s O₂: 445 m/s N₂: 475 m/s Xe: 222 m/s

Same temperature 🔷 same kinetic energy 🔶 large mass has small velocity

Collisions between molecules:

For a particular particle 1

the volume it sweeps during *dt*:

$$V = \pi b^2 < V_x > dt$$

the number of n_2 in this volume:

$$N = \pi b^2 < V_x > dt \ n_2$$

the collision number during time *dt* (collision frequency):

$$Z_{2} = \pi b^{2}_{\max} < Vr > n_{2} \qquad b_{\max} = r_{1} + r_{2}$$
$$Z_{1} = \pi d^{2} < Vr > n_{1} \qquad d = r_{1} + r_{1} = 2r_{1}$$

Note: velocity has been changed to relative velocity

Relative velocity:

$$< V_r > = \left(\frac{8kT}{\pi\mu}\right)^{\frac{1}{2}}$$

$$\mu = \frac{m_1 \cdot m_2}{(m_1 + m_2)}$$

Example 1:

Calculate the collision frequency of N_2 (d=3.6 Å) at 1 atm (760 Torr)?

 $\mu = [28x10^{-3} \text{ kg mol}^{-1}/(6.02x10^{23}/\text{mol})]x [28x10^{-3} \text{ kg mol}^{-1}/(6.02x10^{23}/\text{mol})]/ \\ \{ [28x10^{-3} \text{ kg mol}^{-1}/(6.02x10^{23}/\text{mol})] + [28x10^{-3} \text{ kg mol}^{-1}/(6.02x10^{23}/\text{mol})] \} \\ = [(28x10^{-3}x28x10^{-3}/(28x10^{-3}+28x10^{-3})]/ 6.02x10^{23} \text{ kg} \\ = 2.3x10^{-26} \text{ kg}$

Vr =
$$(8kT/\pi \mu)^{1/2}$$

= $(8x1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}x300 \text{ K}/(3.14x2.3x10^{-26} \text{ kg})^{1/2}$
= 670 m s⁻¹

n = $6.02X10^{23}/(22.4 \text{ L})x1000 \text{ L} \text{ m}^{-3} = 2.6x10^{25} \text{ m}^{-3}$

$$Z = \pi x d^{2} x V_{r} x n$$

= 3.14 x (3.6x10⁻¹⁰m)² x (670 ms⁻¹)x2.6x10²⁵ m⁻³
= 7.1x10⁹ s⁻¹

 $\tau = 1/(7.1 \times 10^9 \text{ s}^{-1}) = 1.4 \times 10^{-10} \text{ s} = 0.14 \text{ ns}$

Average distance travel by molecules (mean free path) is:

$$\lambda = \frac{\langle V \rangle t}{Z_1 \cdot t} = \frac{\langle V \rangle}{Z_1}$$
$$= \frac{1}{\sqrt{2\pi}d^2n_1}$$
Independent of velocity, temperature

For : N_2 , 25°C, 1 atm

 $\lambda = 475 \text{ ms}^{-1} \text{ x} 1.4 \text{ x} 10^{-10} \text{ s} = 665 \text{ Å}$

i> smaller than container

ii> larger than molecular dimension, molecules collide with each other, not wall.

For vacuum system, 0.76x10⁻⁷ Torr

λ**=665 m**

molecules collide with wall,

not with each other.

molecular flow: $\lambda > D$

viscosity flow: $\lambda / d < 0.01$

Transition region: $0.01 < \lambda /d < 1$

Example 2:

Calculate the collision frequency of protein (MW=2800 Da, d=50 Å) with He (d= 2.6Å) at 7.6 mTorr?

- $\mu = [2800 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] \times [28 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] / [2800 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] + [28 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] + [28 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})]$
 - $= [(2800 \times 10^{-3} \times 28 \times 10^{-3} / (2800 \times 10^{-3} + 28 \times 10^{-3})]/6.02 \times 10^{23} \text{ kg}$
 - $= 4.6 \text{ x} 10^{-26} \text{ kg}$

Vr =
$$(8kT/\pi \mu)^{1/2}$$

= $(8x1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}x300 \text{ K}/(3.14x4.6x10^{-26} \text{ kg})^{1/2}$
= 335 m s⁻¹

```
n = 6.02X10^{23}/(22.4 \text{ L})x1000 \text{ L} \text{ m}^{-3} x7.6 x10^{-3}/760 = <math>2.6x10^{20} \text{ m}^{-3}
```

$$Z = \pi x d^{2} x V_{r} x n$$

= 3.14 x (50x10⁻¹⁰m)² x (335 ms⁻¹)x2.6x10²⁰ m⁻³
= 6.9x10⁶ s⁻¹

```
\tau = 1/(6.9 \times 10^6 \text{ s}^{-1}) = 1.4 \times 10^{-7} \text{ s} = 0.14 \text{ }\mu\text{s}
```

Example 3:

If the protein is accelerated to 1000 m/s, how low the pressure of N_2 in vacuum has to be in order to have mean free path 1 m?

```
 \mu = [2800 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] \times [28 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] / \\ \{ [2800 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] + [28 \times 10^{-3} \text{ kg mol}^{-1}/(6.02 \times 10^{23}/\text{mol})] \} \\ = [(2800 \times 10^{-3} \times 28 \times 10^{-3}/(2800 \times 10^{-3} + 28 \times 10^{-3})] / 6.02 \times 10^{23} \text{ kg} \\ = 4.6 \times 10^{-26} \text{ kg} 
 Vr \approx (1000^{2} + 475^{2})^{1/2}
```

```
= 1107 m s<sup>-1</sup>
```

```
\tau = 1000 m s<sup>-1</sup> x \tau s > 1 m; \tau > 10<sup>-3</sup> s; Z < 10<sup>3</sup> s<sup>-1</sup>
```

```
Z = \pi x d^{2} x V_{r} x n
= 3.14 x (50x10<sup>-10</sup>m)<sup>2</sup> x (1107 ms<sup>-1</sup>)x n m<sup>-3</sup>
= 8.6x10<sup>-14</sup> x n s<sup>-1</sup> < 10<sup>3</sup> s<sup>-1</sup>
```

 $n < 1/8.6 \times 10^{17} \text{ m}^{-3} = 1.1 \times 10^{16} \text{ m}^{-3} = 3.2 \times 10^{-7} \text{ Torr}$

- Pumping speed
- Throughput
- Conductance

- Constant volume per sweep per unit time
- As the pressure decreases, less molecules can be sweep (absorbed) per sweep (per unit time) than previous sweep

Pumping speed: Sweep volume per unit time

 $S \equiv dV/dt$

- A property of a pump
- Depending on mechanical design

Throughput: number of molecules pumped per unit time

Q(t) ≡ P(t)x $\frac{\Delta v}{\Delta t}$ = P(t)S (Q changes with time if P changes with time) S = Q/P

Pumping speed: Pump d

 $S \equiv dV/dt$

Pump down time:

Number of molecules pumped out per unit time

From :PV=nRT, we have

Example:

Pump down time:

V=1 m³, S=10 m³/h

P₀=101323.2 Pa =760 Torr

Conductance:

A property of vacuum components tube, aperture,...)

- How easy gas can flow through the component
- inverse of resistance to flow
- related to the shape of tube, aperture

 $\mathsf{C} \equiv \mathsf{Q}/(\mathsf{P}_1\text{-}\mathsf{P}_2)$

 $Q = C(P_1 - P_2)$

Note: Q at every position is the same

C is pressure dependent

Continuum flow (viscosity flow region) Long round tube

$$C = 180 \frac{d^4}{L} P_{ave}$$
 liter/sec

Pressure dependent (d and L in cm, P in Torr) Molecular flow Long round tube

For air at 22 C

$$C = 12 \frac{d^3}{L}$$
 liter/sec

Pressure independent (d and L in cm, P in Torr)

Real pumping speed

Pumping speed:

$S \equiv Q_1/P_1$	(1)
$S_p \equiv Q_2/P_2$	(2)

Conductance: $C \equiv Q/(P_1 - P_2)$ (3)

Because

$$Q_1 = Q_2 (If T_1 = T_2)$$
 (4)

Feom (1)-(4), we have:

 $1/S = 1/S_{p} + 1/C$

Example I : for a long round tube, *L*=1m, d=0.05 m,

in continuum flow (viscosity flow) region

$$C = 180 \frac{d^4}{L} P_{ave} \quad \text{d and L in cm, P in Torn}$$
$$= 180 \frac{5^4}{100} 10^{-1} \text{ liter/sec}$$
$$= 112 \text{ liter/sec}$$

= 405 m³/h

For a pump of pumping speed $S_p=10 \text{ m}^3/\text{h}$ connected to a chamber through the tube , the real pumping speed for chamger is $1/S = 1/S_p + 1/C = 1/10 + 1/405$, S=9.8m³/h

Example II: for a long round tube, *L*=1m, d=0.01 m, in

continuum flow (viscosity flow) region

$$C = 180 \frac{d^4}{L} P_{ave} \quad \text{d and L in cm, P in Torr}$$
$$= 180 \frac{1^4}{100} 10^{-1} \text{ liter/sec}$$
$$= 0.18 \text{ liter/sec}$$
$$= 0.65 \text{ m}^3/\text{h}$$

For a pump of pumping speed $S_p = 10 \text{ m}^3/\text{h}$ connected to a chamber through the tube, the real pumping speed is:

$$1/S = 1/S_p + 1/C = 1/10 + 1/0.65$$
, S=0.63 m³/h (Waste of money)

For *L*=1m, d=0.05 m, S_p=10 (m³/h) 1/S = 1/10 + 1/405, S=9.8 For *l*=1m, d=0.01 m, S_p=10 (m³/h) 1/S = 1/10 + 1/0.65, S=0.63

Mechanical pumps should connected to mass spectrometer using tube with diameter > 4 cm, not longer than 2 m.

Example III: for a long round tube, *L*=1m, d=0.08 m,

in molecular flow region,

$$C = 12 \frac{d^3}{L} \qquad \text{d and L in cm,}$$
$$= 12 \frac{8^3}{100} \text{ liter/sec}$$
$$= 61.4 \text{ liter/sec}$$

For a pump with pumping speed of S_p=300 liter/sec, connected to a chamber through the tube, the real pumping speed is:

 $1/S = 1/S_p + 1/C = 1/300 + 1/61.4$, S=50 liter/sec (waste of money)

Example IV: for a long round tube, *L*=0.05 m, d=0.08 m,

in molecular flow region,

$$C = 12 \frac{d^3}{L} \qquad \text{d and L in cm}$$
$$= 12 \frac{8^3}{10} \text{ liter/sec}$$
$$= 1228 \text{ liter/sec}$$

For a pump with pumping speed of S_p=300 liter/sec, connected to a chamber through the tube, the real pumping

speed is:

 $1/S = 1/S_p + 1/C = 1/300 + 1/1228$, S=241 liter/sec

(tube should be as short as possible, as large as possible, e.g.,

connected directly to chamber)

- High vacuum pumps
- Low (and medium) vacuum pumps

Degree of Vacuum	Pressure range	
Low	10 ⁵ -3.3x10 ³ Pa	760-25 Torr
Medium	3.3x10 ³ -10 ⁻¹ Pa	25-7.6x10 ⁻⁴ Torr
High	10 ⁻¹ -10 ⁻⁴ Pa	7.6x10 ⁻⁴ -7.6x10 ⁻⁷ Torr
Very high	10 ⁻⁴ -10 ⁻⁷ Pa	7.6x10 ⁻⁷ -7.6x10 ⁻¹⁰ Torr
Ultrahigh	10 ⁻⁷ -10 ⁻¹⁰ Pa	7.6x10 ⁻¹⁰ -7.6x10 ⁻¹³ Torr
Extreme ultrahigh	< 10 ⁻¹⁰ Pa	< 7.6x10 ⁻¹³ Torr

oil sealed low vacuum pump

Low vacuum pump

Rotary vane pump Working principle

Suction Transport Compressio Exhaustion

Rotary vane pump One-stage vs. Two-stage

 \rightarrow Reduce the ultimate pressure

	One stage	Two stage
Ultimate pressure (torr)	10-3	10-4
Price	Cheap	Expensive

Oil in rotary pump

 Oil functions:
 Low vapor pressure Appropriate viscosity Stability
 Cooler

Stator -

Rotor --

Rotor

Blade

Spring

Pump oil and oil reservior

RI

- Pumping speed: 1-500 L \cdot s⁻¹
- P_{min} (Ultimate pressure): 10⁻³-10⁻⁴ Torr
- Typical pressure new pump: 5x 10⁻³ Torr old pump: 2x 10⁻² Torr bad pump: 1x 10⁻¹ Torr

Oil sealed low vacuum pump operation notes:

- 1.0il level
- 2. Change oil when it is dirty
- 3. Change oil when it is hot
- 4. Pump oxygen?
- 5. Pump halogen?
- 6. Pump water vapor?

Oil sealed low vacuum pump operation notes:

oil free low vacuum pump

Low vacuum pump

Scroll Pump Working principle

Scroll pump operation notes:

• Change scroll on time

Oil sealed low vacuum pump⁶⁹

High vacuum pump

High vacuum pump: Turbo molecular pump

High vacuum pump: Turbo molecular pump

- Pumping speed is proportional to the inlet area A and the mean circumferential velocity of the blades v, i. e. rotational speed.
- Pumping range: 10⁻⁴ to 10⁻¹¹ Torr
- Oil free, Low vibration & noise

Pumping speed

- Different gases pump down at different rates
- Compression ratio varies exponentially with molecular weight of gases

Turbo molecular pump operation notes

- 1. A roughing pump is used to get the pressure down to $\sim 10^{-3}$ Torr
- 2. Magnetic turbo (how many axis?)/non-magnetic turbo pump
- 3. Orientation (bearing/oil)
- 4. Particle drop in
- 5. Pressure raise
- 6. Electric power shutdown
- 7. Vibration (earthquake)

Ball bearing

Turbo-V 81 M	Turbo-V 81 T	Turbo-V 301 Navigator	Turbo-V Naviga	551 Turt tor Na	oo-V 701 vigator	Turbo-V 1001 Navigator
Pump Model	Turbo-V 81 M	Turbo-V 81 T	Turbo-V 301 Navigator	Turbo-V 551 Navigator	Turbo-V 701 Navigator	Turbo-V 1001 Navigator
Pump Specification	DN 40	DN 63	DN 100	DN 160	DN 200	DN 250
Pumping Speed, I/s						
Nitrogen	50	77	250	550	690	1050
Helium	56	65	220	600	620	900
Hydrogen	46	50	200	510	510	920
Compression Ratio						
Nitrogen	5 x 10 ⁸	7 x 10 ⁸	7 x 10 ⁸	> 1 x 10 ⁹	1 x 10 ⁹	1 x 10 ⁹
Helium	8 x 10 ⁴	3 x 10 ³	1 x 10 ⁵	1 x 10 ⁷	1 x 10 ⁷	1 x 10 ⁷
Hydrogen	7 x 10 ³	3 x 10 ²	1 x 10 ⁴	1 x 10 ⁶	1 x 10 ⁶	1 x 10 ⁶
Base pressure, mbar						
with recommended mechanical pump	5 x 10 ⁻¹⁰	5 x 10 ⁻⁹	< 5 x 10 ⁻¹⁰	< 1 x 10 ⁻¹⁰	< 1 x 10 ⁻¹⁰	< 1 x 10 ⁻¹⁰
with recommended dry pump	5 x 10 ⁻⁹	5 x 10 ⁻⁸	< 5 x 10 ⁻⁹	< 1 x 10 ⁻¹⁰	< 1 x 10 ⁻¹⁰	< 1 x 10 ⁻¹⁰
Startup Time, min	<1	<1	2.5	< 5	< 5	< 4
Rotational Speed, rpm	80,000	80,000	56,000	42,000	42,000	38,000

Differential pumping

Molecular flow aperture

For air at 22 C

C (L/s)=3.7 (T/M)^{1/2} = 11.6 A (cm²) (for air)

T: temperature in K, M: molecular weight

Continuum flow aperture

Q(Pa-m³/s)= 200PAC' P in Pa, A in m², C'=0.85

Ambient ionization mass spectrometer

Differential pumping

 $Q_3 = 1.3 \times 10^{-5} \times 300 \text{ L/s} = 1.3 \times 10^{-5} \times 0.3 \text{ m}^3/\text{s} = 3.9 \times 10^{-6} \text{ Pa-m}^3/\text{s}$

For air at 22 C A = $3.14 \times 0.05 \times 0.05 = 7.8 \times 10^{-3} \text{ cm}^2$

C (L/s)=11.6 A (cm²) = 0.09 L/s = $9x10^{-5}$ m³/s

 $Q_3 = 3.9 \times 10^{-6} \text{ Pa-m}^3/\text{s} = 9 \times 10^{-5} (P_2 - P_3) = 9 \times 10^{-5} P_2$

 $P_2 = 4.2 \times 10^{-2} Pa = 3 \times 10^{-4} Torr$

To keep $P_2 = 4.2 \times 10^{-2} Pa = 3 \times 10^{-4} Torr$

Maximum of Q₂:

 $Q_2 = 4.2 \times 10^{-2} \text{ Pa x } 0.3 \text{ m}^3\text{/s} = 1.2 \times 10^{-2} \text{ Pa m}^3\text{/s}$

$$Q_2 = 0.012 = 200 P_1 AC' Pa - m^3/s = 1.3x 10^{-4} P_1$$
 A = 7.8 x10⁻⁷ m²
 $P_1 = 92 Pa = 0.7 Torr$

If $P_0 = 1$ atm, to keep $P_1 = 0.7$ Torr, what is the pumping speed of S1? $Q_1 = 200 P_0 AC' Pa-m^3/s = 13 Pa m^3/s = 92 S_1$

 $S1 = 0.14 \text{ m}3/\text{s} = 500 \text{ m}^3/\text{h}$

Differential pumping

Pressure detector (gauge)

- Low vacuum: direct, indirect
- High vacuum: indirect

Thermal Conductivity Gauges

- Thermal conductivity gauges are a class of pressure-measuring instruments that operates by measuring in some way the rate of heat transfer between a heated wire and its surroundings.
- The heat transfer between a heated wire and a nearby wall is pressure dependent

Types of thermal conductivity gauges

• Pirani guage:

The change in temperature can be detected by monitoring the resistance of the heated wire, then a Wheatstone bridge circuit is used to measure the resistance change.

 Thermocouple gauge The change in temperature can be measured directly with a thermocouple.

The heat flow under different pressure

Operation notes:

- Orientation
- Gas species

Capacitance manometer: gas species independent

capacitance

$$C = \varepsilon_r \frac{A}{4\pi d} = \frac{Q}{V}$$

Operation notes:

- Orientation
- Calibration

High vacuum gauge

Ionization Gauge for Pressure Measureme

Hot cathode gauge

Using the vacuum chamber makes nude gauge become a complete seal.

*****Gas correction factor

 $P = [I_c \ / \ (S_g \ \cdot \ I_e)] \ \text{ where } \ S_g = S_{N_2} \cdot R_g$

Ic is ionization current collected by ion collector. (amps)

Ie is electron emission current. (amps)

Sg is sensitivity factor for gas "g". (torr⁻¹)

 S_{N_2} is sensitivity factor for nitrogen, standard gas used by industry. (tor R_g is gas correction or relative sensitivity factor.

Gas	Rg	Gas	R	3	Gas	Rg
He	0.18	CO	1.0	5	Kr	1.94
Ne	0.30	H2O	1.1	2	SF6	2.20
D2	0.35	NO	1.1	5	C2H6	2.60
H2	0.46	NH3	1.2	.3	Xe	2.87
N 2	1.00	Ar	1.2	.9	Hg	3.64
Air	1.00	CH4	1.4	0	C3H8	4.20
O 2	1.01	CO ₂	1.4	-2		

Cold cathode gauge

***Working principle**

Cold cathode gauge utilize crossed electric and magnetic fields to trap electrons.

Electric field	$2000 - 6000 \mathrm{V}$			
Magnetic field	1000 – 2000 G			
Range	$10^{-2} - 10^{-9}$ torr			

Without fragile filament, cold cathode gauges are robust and economical, suffering only from the limited range of applicability.

Operation notes:

- Pressure
- Gas species

Full range pressure gauge

Combination of convention and ionization gauge

